Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title complex, (C4H12N2)[CrO4], consists of tetrahedral [CrO4]2- dianions which are connected to the cyclic organic piperazinium dications via hydrogen bonding. All the atoms are located in general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803014879/bt6299sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803014879/bt6299Isup2.hkl
Contains datablock I

CCDC reference: 221646

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.026
  • wR factor = 0.082
  • Data-to-parameter ratio = 23.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

Piperazinium chromate(VI) top
Crystal data top
C4H12N22+·O4Cr2F(000) = 424
Mr = 204.16Dx = 1.688 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6651 (9) ÅCell parameters from 105 reflections
b = 12.3726 (18) Åθ = 16–20°
c = 8.4886 (10) ŵ = 1.40 mm1
β = 93.766 (12)°T = 293 K
V = 803.30 (18) Å3Block, yellow
Z = 40.18 × 0.12 × 0.08 mm
Data collection top
Stoe AED-II four-circle
diffractometer
2034 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
ω scansh = 101
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 1998)
k = 179
Tmin = 0.810, Tmax = 0.894l = 1111
4578 measured reflections4 standard reflections every 120 min
2350 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3211P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2350 reflectionsΔρmax = 0.36 e Å3
101 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.105 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.21819 (3)0.910006 (19)0.17835 (3)0.02268 (10)
O10.03085 (15)0.90257 (10)0.26610 (15)0.0314 (2)
O20.20805 (17)0.81921 (11)0.03380 (13)0.0346 (3)
O30.38107 (15)0.88111 (13)0.30737 (14)0.0392 (3)
O40.2389 (2)1.02997 (12)0.10613 (18)0.0495 (4)
N10.14987 (18)0.91284 (11)0.74774 (15)0.0270 (3)
H1N10.07880.97060.75080.032*
H2N10.16100.88420.84530.032*
C10.0691 (2)0.83133 (14)0.63617 (18)0.0291 (3)
H1A0.04900.86310.53210.035*
H1B0.04260.80830.67190.035*
C20.1892 (2)0.73577 (14)0.6280 (2)0.0328 (3)
H2A0.20120.70060.73030.039*
H2B0.13950.68410.55180.039*
N20.36406 (18)0.77052 (13)0.58131 (16)0.0330 (3)
H1N20.35350.79870.48340.040*
H2N20.43490.71260.57930.040*
C30.4435 (2)0.85223 (15)0.6925 (2)0.0343 (3)
H3A0.55510.87550.65690.041*
H3B0.46380.82040.79660.041*
C40.3232 (2)0.94819 (14)0.7014 (2)0.0334 (3)
H4A0.37290.99970.77800.040*
H4B0.31100.98370.59940.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.02214 (14)0.02577 (14)0.01977 (13)0.00299 (8)0.00120 (8)0.00162 (8)
O10.0264 (5)0.0316 (6)0.0369 (6)0.0027 (4)0.0064 (4)0.0005 (5)
O20.0438 (7)0.0370 (7)0.0232 (5)0.0006 (5)0.0033 (5)0.0036 (4)
O30.0258 (5)0.0605 (9)0.0304 (6)0.0027 (5)0.0055 (4)0.0051 (6)
O40.0655 (9)0.0360 (7)0.0462 (7)0.0165 (7)0.0024 (7)0.0122 (6)
N10.0289 (6)0.0278 (6)0.0245 (6)0.0051 (5)0.0034 (5)0.0006 (5)
C10.0250 (6)0.0326 (8)0.0294 (7)0.0016 (6)0.0019 (5)0.0018 (6)
C20.0413 (8)0.0237 (7)0.0324 (7)0.0016 (6)0.0048 (6)0.0023 (6)
N20.0330 (6)0.0370 (7)0.0285 (6)0.0144 (6)0.0009 (5)0.0042 (6)
C30.0233 (7)0.0395 (9)0.0395 (8)0.0018 (6)0.0017 (6)0.0024 (7)
C40.0314 (7)0.0257 (7)0.0432 (9)0.0036 (6)0.0031 (6)0.0020 (7)
Geometric parameters (Å, º) top
Cr1—O41.6176 (14)C2—N21.486 (2)
Cr1—O31.6451 (12)C2—H2A0.9700
Cr1—O21.6617 (12)C2—H2B0.9700
Cr1—O11.6631 (12)N2—C31.486 (2)
N1—C41.476 (2)N2—H1N20.9000
N1—C11.490 (2)N2—H2N20.9000
N1—H1N10.9000C3—C41.508 (2)
N1—H2N10.9000C3—H3A0.9700
C1—C21.503 (2)C3—H3B0.9700
C1—H1A0.9700C4—H4A0.9700
C1—H1B0.9700C4—H4B0.9700
O4—Cr1—O3111.27 (8)N2—C2—H2B109.5
O4—Cr1—O2109.97 (7)C1—C2—H2B109.5
O3—Cr1—O2109.96 (7)H2A—C2—H2B108.1
O4—Cr1—O1109.23 (8)C2—N2—C3111.48 (12)
O3—Cr1—O1109.25 (6)C2—N2—H1N2109.3
O2—Cr1—O1107.07 (6)C3—N2—H1N2109.3
C4—N1—C1112.01 (12)C2—N2—H2N2109.3
C4—N1—H1N1109.2C3—N2—H2N2109.3
C1—N1—H1N1109.2H1N2—N2—H2N2108.0
C4—N1—H2N1109.2N2—C3—C4109.94 (13)
C1—N1—H2N1109.2N2—C3—H3A109.7
H1N1—N1—H2N1107.9C4—C3—H3A109.7
N1—C1—C2109.36 (13)N2—C3—H3B109.7
N1—C1—H1A109.8C4—C3—H3B109.7
C2—C1—H1A109.8H3A—C3—H3B108.2
N1—C1—H1B109.8N1—C4—C3110.10 (14)
C2—C1—H1B109.8N1—C4—H4A109.6
H1A—C1—H1B108.3C3—C4—H4A109.6
N2—C2—C1110.52 (14)N1—C4—H4B109.6
N2—C2—H2A109.5C3—C4—H4B109.6
C1—C2—H2A109.5H4A—C4—H4B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.901.782.6697 (18)169
N1—H2N1···O2ii0.901.812.7009 (18)173
N2—H1N2···O30.901.832.709 (2)164
N2—H2N2···O2iii0.902.192.9133 (19)137
N2—H2N2···O1iii0.902.222.9014 (19)132
Symmetry codes: (i) x, y+2, z+1; (ii) x, y, z+1; (iii) x+1/2, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds