Buy article online - an online subscription or single-article purchase is required to access this article.
The structure of the title complex, (C4H12N2)[CrO4], consists of tetrahedral [CrO4]2- dianions which are connected to the cyclic organic piperazinium dications via hydrogen bonding. All the atoms are located in general positions.
Supporting information
CCDC reference: 221646
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.002 Å
- R factor = 0.026
- wR factor = 0.082
- Data-to-parameter ratio = 23.3
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.
Piperazinium chromate(VI)
top
Crystal data top
C4H12N22+·O4Cr2− | F(000) = 424 |
Mr = 204.16 | Dx = 1.688 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6651 (9) Å | Cell parameters from 105 reflections |
b = 12.3726 (18) Å | θ = 16–20° |
c = 8.4886 (10) Å | µ = 1.40 mm−1 |
β = 93.766 (12)° | T = 293 K |
V = 803.30 (18) Å3 | Block, yellow |
Z = 4 | 0.18 × 0.12 × 0.08 mm |
Data collection top
Stoe AED-II four-circle diffractometer | 2034 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 30.0°, θmin = 2.9° |
ω scans | h = −10→1 |
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 1998) | k = −17→9 |
Tmin = 0.810, Tmax = 0.894 | l = −11→11 |
4578 measured reflections | 4 standard reflections every 120 min |
2350 independent reflections | intensity decay: none |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3211P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2350 reflections | Δρmax = 0.36 e Å−3 |
101 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.105 (5) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cr1 | 0.21819 (3) | 0.910006 (19) | 0.17835 (3) | 0.02268 (10) | |
O1 | 0.03085 (15) | 0.90257 (10) | 0.26610 (15) | 0.0314 (2) | |
O2 | 0.20805 (17) | 0.81921 (11) | 0.03380 (13) | 0.0346 (3) | |
O3 | 0.38107 (15) | 0.88111 (13) | 0.30737 (14) | 0.0392 (3) | |
O4 | 0.2389 (2) | 1.02997 (12) | 0.10613 (18) | 0.0495 (4) | |
N1 | 0.14987 (18) | 0.91284 (11) | 0.74774 (15) | 0.0270 (3) | |
H1N1 | 0.0788 | 0.9706 | 0.7508 | 0.032* | |
H2N1 | 0.1610 | 0.8842 | 0.8453 | 0.032* | |
C1 | 0.0691 (2) | 0.83133 (14) | 0.63617 (18) | 0.0291 (3) | |
H1A | 0.0490 | 0.8631 | 0.5321 | 0.035* | |
H1B | −0.0426 | 0.8083 | 0.6719 | 0.035* | |
C2 | 0.1892 (2) | 0.73577 (14) | 0.6280 (2) | 0.0328 (3) | |
H2A | 0.2012 | 0.7006 | 0.7303 | 0.039* | |
H2B | 0.1395 | 0.6841 | 0.5518 | 0.039* | |
N2 | 0.36406 (18) | 0.77052 (13) | 0.58131 (16) | 0.0330 (3) | |
H1N2 | 0.3535 | 0.7987 | 0.4834 | 0.040* | |
H2N2 | 0.4349 | 0.7126 | 0.5793 | 0.040* | |
C3 | 0.4435 (2) | 0.85223 (15) | 0.6925 (2) | 0.0343 (3) | |
H3A | 0.5551 | 0.8755 | 0.6569 | 0.041* | |
H3B | 0.4638 | 0.8204 | 0.7966 | 0.041* | |
C4 | 0.3232 (2) | 0.94819 (14) | 0.7014 (2) | 0.0334 (3) | |
H4A | 0.3729 | 0.9997 | 0.7780 | 0.040* | |
H4B | 0.3110 | 0.9837 | 0.5994 | 0.040* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cr1 | 0.02214 (14) | 0.02577 (14) | 0.01977 (13) | −0.00299 (8) | −0.00120 (8) | 0.00162 (8) |
O1 | 0.0264 (5) | 0.0316 (6) | 0.0369 (6) | 0.0027 (4) | 0.0064 (4) | −0.0005 (5) |
O2 | 0.0438 (7) | 0.0370 (7) | 0.0232 (5) | −0.0006 (5) | 0.0033 (5) | −0.0036 (4) |
O3 | 0.0258 (5) | 0.0605 (9) | 0.0304 (6) | −0.0027 (5) | −0.0055 (4) | 0.0051 (6) |
O4 | 0.0655 (9) | 0.0360 (7) | 0.0462 (7) | −0.0165 (7) | −0.0024 (7) | 0.0122 (6) |
N1 | 0.0289 (6) | 0.0278 (6) | 0.0245 (6) | 0.0051 (5) | 0.0034 (5) | −0.0006 (5) |
C1 | 0.0250 (6) | 0.0326 (8) | 0.0294 (7) | −0.0016 (6) | −0.0019 (5) | 0.0018 (6) |
C2 | 0.0413 (8) | 0.0237 (7) | 0.0324 (7) | −0.0016 (6) | −0.0048 (6) | −0.0023 (6) |
N2 | 0.0330 (6) | 0.0370 (7) | 0.0285 (6) | 0.0144 (6) | −0.0009 (5) | −0.0042 (6) |
C3 | 0.0233 (7) | 0.0395 (9) | 0.0395 (8) | 0.0018 (6) | −0.0017 (6) | −0.0024 (7) |
C4 | 0.0314 (7) | 0.0257 (7) | 0.0432 (9) | −0.0036 (6) | 0.0031 (6) | −0.0020 (7) |
Geometric parameters (Å, º) top
Cr1—O4 | 1.6176 (14) | C2—N2 | 1.486 (2) |
Cr1—O3 | 1.6451 (12) | C2—H2A | 0.9700 |
Cr1—O2 | 1.6617 (12) | C2—H2B | 0.9700 |
Cr1—O1 | 1.6631 (12) | N2—C3 | 1.486 (2) |
N1—C4 | 1.476 (2) | N2—H1N2 | 0.9000 |
N1—C1 | 1.490 (2) | N2—H2N2 | 0.9000 |
N1—H1N1 | 0.9000 | C3—C4 | 1.508 (2) |
N1—H2N1 | 0.9000 | C3—H3A | 0.9700 |
C1—C2 | 1.503 (2) | C3—H3B | 0.9700 |
C1—H1A | 0.9700 | C4—H4A | 0.9700 |
C1—H1B | 0.9700 | C4—H4B | 0.9700 |
| | | |
O4—Cr1—O3 | 111.27 (8) | N2—C2—H2B | 109.5 |
O4—Cr1—O2 | 109.97 (7) | C1—C2—H2B | 109.5 |
O3—Cr1—O2 | 109.96 (7) | H2A—C2—H2B | 108.1 |
O4—Cr1—O1 | 109.23 (8) | C2—N2—C3 | 111.48 (12) |
O3—Cr1—O1 | 109.25 (6) | C2—N2—H1N2 | 109.3 |
O2—Cr1—O1 | 107.07 (6) | C3—N2—H1N2 | 109.3 |
C4—N1—C1 | 112.01 (12) | C2—N2—H2N2 | 109.3 |
C4—N1—H1N1 | 109.2 | C3—N2—H2N2 | 109.3 |
C1—N1—H1N1 | 109.2 | H1N2—N2—H2N2 | 108.0 |
C4—N1—H2N1 | 109.2 | N2—C3—C4 | 109.94 (13) |
C1—N1—H2N1 | 109.2 | N2—C3—H3A | 109.7 |
H1N1—N1—H2N1 | 107.9 | C4—C3—H3A | 109.7 |
N1—C1—C2 | 109.36 (13) | N2—C3—H3B | 109.7 |
N1—C1—H1A | 109.8 | C4—C3—H3B | 109.7 |
C2—C1—H1A | 109.8 | H3A—C3—H3B | 108.2 |
N1—C1—H1B | 109.8 | N1—C4—C3 | 110.10 (14) |
C2—C1—H1B | 109.8 | N1—C4—H4A | 109.6 |
H1A—C1—H1B | 108.3 | C3—C4—H4A | 109.6 |
N2—C2—C1 | 110.52 (14) | N1—C4—H4B | 109.6 |
N2—C2—H2A | 109.5 | C3—C4—H4B | 109.6 |
C1—C2—H2A | 109.5 | H4A—C4—H4B | 108.2 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1i | 0.90 | 1.78 | 2.6697 (18) | 169 |
N1—H2N1···O2ii | 0.90 | 1.81 | 2.7009 (18) | 173 |
N2—H1N2···O3 | 0.90 | 1.83 | 2.709 (2) | 164 |
N2—H2N2···O2iii | 0.90 | 2.19 | 2.9133 (19) | 137 |
N2—H2N2···O1iii | 0.90 | 2.22 | 2.9014 (19) | 132 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, y, z+1; (iii) x+1/2, −y+3/2, z+1/2. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.