Buy article online - an online subscription or single-article purchase is required to access this article.
In the crystal structure of the polymeric title compound, (C2H8N)[Eu(C2O4)2(H2O)]·3H2O, the independent oxalate that lies on a general position chelates to two Eu atoms, as do the other two oxalates that lie on different centres of inversion, the bridging mode of the oxalates giving rise to a three-dimensional anionic network. The water-coordinated Eu atom exists in a tricapped trigonal–prismatic geometry. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen bonding with each other and with the network.
Supporting information
CCDC reference: 287467
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean (C-C) = 0.005 Å
- R factor = 0.026
- wR factor = 0.062
- Data-to-parameter ratio = 14.7
checkCIF/PLATON results
No syntax errors found
Alert level B
PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N1
PLAT417_ALERT_2_B Short Inter D-H..H-D H1W2 .. H2W1 .. 2.08 Ang.
Alert level C
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.55
PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C2 ... 1.56 Ang.
PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C3 - C3_c ... 1.54 Ang.
PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C4 - C4_d ... 1.55 Ang.
PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 10
PLAT731_ALERT_1_C Bond Calc 0.86(3), Rep 0.850(10) ...... 3.00 su-Rat
O1W -H1W1 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat
O1W -H1W2 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Rat
O2W -H2W1 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.850(10) ...... 4.00 su-Rat
O3W -H3W1 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.840(10) ...... 4.00 su-Rat
O3W -H3W2 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat
O4W -H4W1 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.850(10) ...... 4.00 su-Rat
O4W -H4W2 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat
N1 -H1N1 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.86(4), Rep 0.850(10) ...... 4.00 su-Rat
N1 -H1N2 1.555 1.555
PLAT732_ALERT_1_C Angle Calc 111(5), Rep 111(2) ...... 2.50 su-Rat
H2W1 -O2W -H2W2 1.555 1.555 1.555
PLAT732_ALERT_1_C Angle Calc 111(5), Rep 111(2) ...... 2.50 su-Rat
H3W1 -O3W -H3W2 1.555 1.555 1.555
PLAT732_ALERT_1_C Angle Calc 110(5), Rep 109(2) ...... 2.50 su-Rat
H4W1 -O4W -H4W2 1.555 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.86(3), Rep 0.850(10) ...... 3.00 su-Rat
O1W -H1# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat
O1W -H2# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(10) ...... 4.00 su-Rat
O3W -H5# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.840(10) ...... 4.00 su-Rat
O3W -H6# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat
O4W -H7# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(10) ...... 4.00 su-Rat
O4W -H8# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat
N1 -H9# 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.86(4), Rep 0.850(10) ...... 4.00 su-Rat
N1 -H10# 1.555 1.555
PLAT736_ALERT_1_C H...A Calc 1.92(3), Rep 1.920(10) ...... 3.00 su-Rat
H1# -O2W 1.555 1.555
PLAT736_ALERT_1_C H...A Calc 2.12(4), Rep 2.120(10) ...... 4.00 su-Rat
H8# -O3 1.555 2.545
PLAT736_ALERT_1_C H...A Calc 1.96(3), Rep 1.960(10) ...... 3.00 su-Rat
H9# -O3W 1.555 1.555
0 ALERT level A = In general: serious problem
2 ALERT level B = Potentially serious problem
29 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
24 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
A mixture of dieuropium trioxalate xhydrate (0.012 g, 0.02 mmol), 1,3,5-benzenetricarboxylic acid (0.011 g, 0.05 mmol) and water (4 ml) was heated to 333 K, and to this mixture was added di-n-propylethylamine (0.04 g, 0.05 mmol). The solution was placed in a Teflon-lined Parr bomb, which was heated to 453 K for 48 h. It was cooled at a rate of 5 K h−1 to 333 K to yield colourless crystals of (I). As benzenetricarboxylic acid was not incorporated into the product, the reaction is essentially between dieuropium trixoxalate and dipropylethylamine; the dimethylammonium cation in the product probably results from the decomposition of dipropylethylamine.
The C-bound H atoms were placed in calculated positions, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C), and were included in the refinement in the riding-model approximation. Water and ammonium H atoms were located in difference Fourier maps, and were refined with distance restraints of O—H = N—H = 0.85 (1) Å and H···H = 1.39 (1) Å and with Uiso(H) = 1.2Ueq(O,N). The short H1W2···H2W1 distance of 2.08 Å is probably a consequence of some disorder in atom O2W, but the disorder could not be resolved. The largest peak in the final difference Fourier map of 1.08 e− Å−3 was about 1 Å from Eu1.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Poly[dimethylammonium aquadi-µ-oxalato-europate(III) trihydrate]
top
Crystal data top
(C2H8N)[Eu(C2O4)2(H2O)]·3H2O | F(000) = 872 |
Mr = 446.16 | Dx = 2.143 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 885 reflections |
a = 9.674 (1) Å | θ = 2.4–27.2° |
b = 11.761 (1) Å | µ = 4.60 mm−1 |
c = 12.315 (2) Å | T = 295 K |
β = 99.285 (2)° | Block, colourless |
V = 1382.8 (3) Å3 | 0.06 × 0.05 × 0.05 mm |
Z = 4 | |
Data collection top
Bruker SMART 1000 area-detector diffractometer | 3113 independent reflections |
Radiation source: fine-focus sealed tube | 2578 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→7 |
Tmin = 0.702, Tmax = 0.803 | k = −15→14 |
8455 measured reflections | l = −15→15 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3 |
3113 reflections | (Δ/σ)max = 0.001 |
212 parameters | Δρmax = 1.07 e Å−3 |
15 restraints | Δρmin = −0.42 e Å−3 |
Crystal data top
(C2H8N)[Eu(C2O4)2(H2O)]·3H2O | V = 1382.8 (3) Å3 |
Mr = 446.16 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.674 (1) Å | µ = 4.60 mm−1 |
b = 11.761 (1) Å | T = 295 K |
c = 12.315 (2) Å | 0.06 × 0.05 × 0.05 mm |
β = 99.285 (2)° | |
Data collection top
Bruker SMART 1000 area-detector diffractometer | 3113 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2578 reflections with I > 2σ(I) |
Tmin = 0.702, Tmax = 0.803 | Rint = 0.026 |
8455 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.026 | 15 restraints |
wR(F2) = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 1.07 e Å−3 |
3113 reflections | Δρmin = −0.42 e Å−3 |
212 parameters | |
Special details top
Experimental. A dimensionless value of 2r*µ = 0.30 was used in the SADABS step. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Eu1 | 0.71368 (2) | 0.51552 (1) | 0.33081 (1) | 0.02102 (7) | |
O1 | 0.8070 (3) | 0.6409 (2) | 0.2055 (2) | 0.0272 (6) | |
O2 | 0.8660 (3) | 0.8194 (2) | 0.1726 (2) | 0.0253 (6) | |
O3 | 0.6396 (3) | 0.7159 (2) | 0.3435 (2) | 0.0288 (6) | |
O4 | 0.6851 (3) | 0.8950 (2) | 0.3006 (2) | 0.0318 (6) | |
O5 | 0.6813 (3) | 0.5115 (2) | 0.5224 (2) | 0.0305 (6) | |
O6 | 0.5335 (3) | 0.4854 (2) | 0.6428 (2) | 0.0263 (6) | |
O7 | 0.9160 (3) | 0.6182 (2) | 0.4341 (2) | 0.0306 (6) | |
O8 | 1.1006 (3) | 0.6088 (2) | 0.5673 (2) | 0.0347 (7) | |
O1W | 0.5452 (3) | 0.5236 (3) | 0.1537 (2) | 0.0374 (7) | |
O2W | 0.4196 (5) | 0.3424 (3) | 0.0340 (3) | 0.066 (1) | |
O3W | 0.1705 (6) | 0.5038 (4) | 0.0076 (3) | 0.079 (1) | |
O4W | 0.0859 (5) | 0.2816 (4) | 0.0322 (4) | 0.077 (1) | |
N1 | 0.2682 (5) | 0.6312 (4) | 0.1956 (4) | 0.051 (1) | |
C1 | 0.8002 (4) | 0.7455 (3) | 0.2175 (3) | 0.0220 (7) | |
C2 | 0.6990 (4) | 0.7897 (3) | 0.2946 (3) | 0.0225 (8) | |
C3 | 0.5625 (4) | 0.4992 (3) | 0.5474 (3) | 0.0219 (7) | |
C4 | 1.0046 (4) | 0.5657 (3) | 0.4997 (3) | 0.0256 (8) | |
C5 | 0.1511 (7) | 0.6242 (7) | 0.2548 (5) | 0.084 (2) | |
C6 | 0.3064 (8) | 0.7458 (6) | 0.1680 (5) | 0.087 (2) | |
H1W1 | 0.514 (5) | 0.462 (2) | 0.122 (3) | 0.045* | |
H1W2 | 0.572 (4) | 0.568 (2) | 0.107 (2) | 0.045* | |
H2W1 | 0.334 (2) | 0.355 (4) | 0.014 (5) | 0.079* | |
H2W2 | 0.435 (5) | 0.273 (1) | 0.046 (5) | 0.079* | |
H3W1 | 0.160 (6) | 0.543 (4) | −0.051 (3) | 0.095* | |
H3W2 | 0.121 (6) | 0.445 (3) | −0.001 (5) | 0.095* | |
H4W1 | 0.077 (6) | 0.253 (5) | −0.032 (2) | 0.093* | |
H4W2 | 0.017 (4) | 0.262 (5) | 0.063 (4) | 0.093* | |
H1N1 | 0.252 (5) | 0.589 (3) | 0.139 (2) | 0.061* | |
H1N2 | 0.338 (4) | 0.605 (4) | 0.240 (3) | 0.061* | |
H5A | 0.1756 | 0.6599 | 0.3254 | 0.127* | |
H5B | 0.1283 | 0.5459 | 0.2646 | 0.127* | |
H5C | 0.0717 | 0.6623 | 0.2137 | 0.127* | |
H6A | 0.2260 | 0.7835 | 0.1280 | 0.130* | |
H6B | 0.3792 | 0.7424 | 0.1236 | 0.130* | |
H6C | 0.3394 | 0.7871 | 0.2344 | 0.130* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Eu1 | 0.0240 (1) | 0.0177 (1) | 0.0222 (1) | 0.0001 (1) | 0.0063 (1) | 0.0002 (1) |
O1 | 0.039 (2) | 0.016 (1) | 0.030 (1) | 0.001 (1) | 0.015 (1) | −0.001 (1) |
O2 | 0.024 (2) | 0.021 (1) | 0.033 (2) | 0.001 (1) | 0.010 (1) | 0.004 (1) |
O3 | 0.035 (2) | 0.021 (1) | 0.035 (2) | 0.001 (1) | 0.019 (1) | 0.003 (1) |
O4 | 0.048 (2) | 0.018 (1) | 0.034 (2) | 0.001 (1) | 0.020 (1) | 0.001 (1) |
O5 | 0.023 (1) | 0.043 (2) | 0.026 (1) | −0.003 (1) | 0.005 (1) | −0.001 (1) |
O6 | 0.025 (1) | 0.034 (1) | 0.020 (1) | 0.002 (1) | 0.004 (1) | 0.002 (1) |
O7 | 0.032 (2) | 0.023 (1) | 0.036 (2) | −0.003 (1) | 0.001 (1) | 0.007 (1) |
O8 | 0.032 (2) | 0.023 (1) | 0.045 (2) | 0.002 (1) | −0.006 (1) | −0.007 (1) |
O1W | 0.043 (2) | 0.042 (2) | 0.028 (2) | −0.006 (1) | 0.005 (1) | 0.001 (1) |
O2W | 0.093 (3) | 0.038 (2) | 0.068 (3) | 0.000 (2) | 0.010 (2) | −0.007 (2) |
O3W | 0.124 (4) | 0.073 (3) | 0.045 (2) | −0.021 (3) | 0.023 (3) | 0.002 (2) |
O4W | 0.113 (4) | 0.059 (3) | 0.072 (3) | −0.018 (2) | 0.051 (3) | −0.013 (2) |
N1 | 0.043 (3) | 0.065 (3) | 0.046 (3) | 0.019 (2) | 0.011 (2) | 0.011 (2) |
C1 | 0.024 (2) | 0.024 (2) | 0.018 (2) | 0.000 (1) | 0.002 (2) | 0.002 (1) |
C2 | 0.025 (2) | 0.021 (2) | 0.021 (2) | 0.002 (1) | 0.004 (2) | 0.000 (1) |
C3 | 0.026 (2) | 0.017 (2) | 0.023 (2) | −0.001 (1) | 0.005 (2) | 0.000 (1) |
C4 | 0.024 (2) | 0.027 (2) | 0.027 (2) | 0.001 (2) | 0.009 (2) | −0.002 (2) |
C5 | 0.061 (4) | 0.136 (7) | 0.060 (4) | 0.029 (4) | 0.019 (3) | 0.019 (4) |
C6 | 0.098 (6) | 0.063 (4) | 0.097 (5) | −0.002 (4) | 0.007 (4) | 0.019 (4) |
Geometric parameters (Å, º) top
Eu1—O1 | 2.412 (2) | C1—C2 | 1.560 (5) |
Eu1—O2i | 2.430 (2) | C3—C3ii | 1.540 (7) |
Eu1—O3 | 2.476 (2) | C4—C4iii | 1.547 (8) |
Eu1—O4i | 2.469 (2) | O1W—H1W1 | 0.85 (1) |
Eu1—O5 | 2.430 (3) | O1W—H1W2 | 0.85 (1) |
Eu1—O6ii | 2.465 (3) | O2W—H2W1 | 0.84 (1) |
Eu1—O7 | 2.471 (3) | O2W—H2W2 | 0.85 (1) |
Eu1—O8iii | 2.492 (3) | O3W—H3W1 | 0.85 (1) |
Eu1—O1W | 2.505 (3) | O3W—H3W2 | 0.84 (1) |
O1—C1 | 1.242 (4) | O4W—H4W1 | 0.85 (1) |
O2—C1 | 1.257 (4) | O4W—H4W2 | 0.85 (1) |
O3—C2 | 1.247 (4) | N1—H1N1 | 0.85 (1) |
O4—C2 | 1.249 (4) | N1—H1N2 | 0.85 (1) |
O5—C3 | 1.245 (4) | C5—H5A | 0.96 |
O6—C3 | 1.261 (4) | C5—H5B | 0.96 |
O7—C4 | 1.244 (4) | C5—H5C | 0.96 |
O8—C4 | 1.250 (4) | C6—H6A | 0.96 |
N1—C5 | 1.445 (7) | C6—H6B | 0.96 |
N1—C6 | 1.452 (8) | C6—H6C | 0.96 |
| | | |
O1—Eu1—O2i | 136.0 (1) | C3—O5—Eu1 | 120.8 (2) |
O1—Eu1—O3 | 66.4 (1) | C3—O6—Eu1ii | 119.3 (2) |
O1—Eu1—O4i | 72.7 (1) | C4—O7—Eu1 | 119.8 (2) |
O1—Eu1—O5 | 138.9 (1) | C4—O8—Eu1iii | 119.7 (2) |
O1—Eu1—O6ii | 123.9 (1) | C5—N1—C6 | 114.9 (5) |
O1—Eu1—O7 | 71.5 (1) | O1—C1—O2 | 126.4 (3) |
O1—Eu1—O8iii | 111.5 (1) | O1—C1—C2 | 116.9 (3) |
O1—Eu1—O1W | 71.2 (1) | O2—C1—C2 | 116.7 (3) |
O2i—Eu1—O3 | 144.2 (1) | O3—C2—O4 | 126.8 (3) |
O2i—Eu1—O4i | 66.5 (1) | O3—C2—C1 | 116.4 (3) |
O2i—Eu1—O5 | 84.7 (1) | O4—C2—C1 | 116.7 (3) |
O2i—Eu1—O6ii | 71.7 (1) | O5—C3—O6 | 126.8 (3) |
O2i—Eu1—O7 | 134.1 (1) | O5—C3—C3ii | 117.0 (4) |
O2i—Eu1—O8iii | 69.7 (1) | O6—C3—C3ii | 116.3 (4) |
O2i—Eu1—O1W | 82.0 (1) | O7—C4—O8 | 126.2 (4) |
O3—Eu1—O4i | 137.5 (1) | O7—C4—C4iii | 117.7 (4) |
O3—Eu1—O5 | 82.7 (1) | O8—C4—C4iii | 116.1 (4) |
O3—Eu1—O6ii | 72.5 (1) | Eu1—O1W—H1W1 | 120 (3) |
O3—Eu1—O7 | 73.5 (1) | Eu1—O1W—H1W2 | 113 (3) |
O3—Eu1—O8iii | 136.0 (1) | H1W1—O1W—H1W2 | 110 (2) |
O3—Eu1—O1W | 82.2 (1) | H2W1—O2W—H2W2 | 111 (2) |
O4i—Eu1—O5 | 138.7 (1) | H3W1—O3W—H3W2 | 111 (2) |
O4i—Eu1—O6ii | 125.4 (1) | H4W1—O4W—H4W2 | 109 (2) |
O4i—Eu1—O7 | 104.7 (1) | C5—N1—H1N1 | 109 (4) |
O4i—Eu1—O8iii | 70.3 (1) | C6—N1—H1N1 | 112 (4) |
O4i—Eu1—O1W | 73.9 (1) | C5—N1—H1N2 | 105 (4) |
O5—Eu1—O6ii | 65.9 (1) | C6—N1—H1N2 | 106 (4) |
O5—Eu1—O7 | 74.1 (1) | H1N1—N1—H1N2 | 110 (2) |
O5—Eu1—O8iii | 72.3 (1) | N1—C5—H5A | 109.5 |
O5—Eu1—O1W | 132.7 (1) | N1—C5—H5B | 109.5 |
O6ii—Eu1—O7 | 129.7 (1) | H5A—C5—H5B | 109.5 |
O6ii—Eu1—O8iii | 124.5 (1) | N1—C5—H5C | 109.5 |
O6ii—Eu1—O1W | 66.8 (1) | H5A—C5—H5C | 109.5 |
O7—Eu1—O8iii | 65.2 (1) | H5B—C5—H5C | 109.5 |
O7—Eu1—O1W | 141.2 (1) | N1—C6—H6A | 109.5 |
O8iii—Eu1—O1W | 140.9 (1) | N1—C6—H6B | 109.5 |
C1—O1—Eu1 | 119.8 (2) | H6A—C6—H6B | 109.5 |
C1—O2—Eu1iv | 118.9 (2) | N1—C6—H6C | 109.5 |
C2—O3—Eu1 | 118.1 (2) | H6A—C6—H6C | 109.5 |
C2—O4—Eu1iv | 118.3 (2) | H6B—C6—H6C | 109.5 |
| | | |
O5—Eu1—O1—C1 | −31.3 (3) | O6ii—Eu1—O7—C4 | 105.3 (3) |
O2i—Eu1—O1—C1 | 158.8 (2) | O4i—Eu1—O7—C4 | −69.8 (3) |
O6ii—Eu1—O1—C1 | 60.0 (3) | O3—Eu1—O7—C4 | 154.4 (3) |
O4i—Eu1—O1—C1 | −178.5 (3) | O8iii—Eu1—O7—C4 | −10.0 (3) |
O7—Eu1—O1—C1 | −65.9 (3) | O1W—Eu1—O7—C4 | −152.2 (2) |
O3—Eu1—O1—C1 | 13.6 (3) | Eu1—O1—C1—O2 | 165.9 (3) |
O8iii—Eu1—O1—C1 | −118.6 (3) | Eu1—O1—C1—C2 | −14.9 (4) |
O1W—Eu1—O1—C1 | 103.1 (3) | Eu1iv—O2—C1—O1 | 163.0 (3) |
O1—Eu1—O3—C2 | −10.8 (3) | Eu1iv—O2—C1—C2 | −16.2 (4) |
O5—Eu1—O3—C2 | 141.3 (3) | Eu1—O3—C2—O4 | −172.5 (3) |
O2i—Eu1—O3—C2 | −148.2 (2) | Eu1—O3—C2—C1 | 7.9 (4) |
O6ii—Eu1—O3—C2 | −151.7 (3) | Eu1iv—O4—C2—O3 | −169.7 (3) |
O4i—Eu1—O3—C2 | −27.9 (3) | Eu1iv—O4—C2—C1 | 9.9 (4) |
O7—Eu1—O3—C2 | 65.9 (3) | O1—C1—C2—O3 | 4.4 (5) |
O8iii—Eu1—O3—C2 | 86.4 (3) | O2—C1—C2—O3 | −176.3 (3) |
O1W—Eu1—O3—C2 | −83.6 (3) | Eu1iv—C1—C2—O3 | 172.8 (3) |
O1—Eu1—O5—C3 | 122.0 (2) | O1—C1—C2—O4 | −175.2 (3) |
O2i—Eu1—O5—C3 | −65.0 (3) | O2—C1—C2—O4 | 4.1 (5) |
O6ii—Eu1—O5—C3 | 7.3 (2) | Eu1iv—C1—C2—O4 | −6.8 (3) |
O4i—Eu1—O5—C3 | −109.7 (3) | Eu1—O5—C3—O6 | 173.0 (3) |
O7—Eu1—O5—C3 | 156.1 (3) | Eu1—O5—C3—C3ii | −6.8 (5) |
O3—Eu1—O5—C3 | 81.3 (3) | Eu1ii—O6—C3—O5 | 173.3 (3) |
O8iii—Eu1—O5—C3 | −135.4 (3) | Eu1ii—O6—C3—C3ii | −6.8 (5) |
O1W—Eu1—O5—C3 | 9.0 (3) | Eu1—O7—C4—O8 | −169.8 (3) |
O1—Eu1—O7—C4 | −135.5 (3) | Eu1—O7—C4—C4iii | 9.1 (5) |
O5—Eu1—O7—C4 | 67.4 (3) | Eu1iii—O8—C4—O7 | −170.6 (3) |
O2i—Eu1—O7—C4 | 1.6 (3) | Eu1iii—O8—C4—C4iii | 10.4 (5) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, y+1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O2W | 0.85 (1) | 1.92 (1) | 2.759 (5) | 169 (4) |
O1W—H1W2···O2Wv | 0.85 (1) | 2.05 (2) | 2.862 (5) | 162 (4) |
O2W—H2W2···O7i | 0.85 (1) | 2.30 (2) | 3.071 (5) | 151 (4) |
O2W—H2W2···O8i | 0.85 (1) | 2.37 (4) | 3.011 (4) | 133 (5) |
O3W—H3W1···O4vi | 0.85 (1) | 2.02 (2) | 2.838 (5) | 162 (7) |
O3W—H3W2···O4W | 0.84 (1) | 2.00 (3) | 2.770 (6) | 151 (5) |
O4W—H4W1···O2v | 0.85 (1) | 2.08 (2) | 2.893 (4) | 159 (5) |
O4W—H4W2···O3vii | 0.85 (1) | 2.12 (1) | 2.962 (5) | 173 (5) |
N1—H1N1···O3W | 0.85 (1) | 1.96 (1) | 2.792 (6) | 167 (4) |
N1—H1N2···O6ii | 0.85 (1) | 2.05 (2) | 2.879 (5) | 165 (5) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x−1/2, −y+3/2, z−1/2; (vii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data |
Chemical formula | (C2H8N)[Eu(C2O4)2(H2O)]·3H2O |
Mr | 446.16 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 9.674 (1), 11.761 (1), 12.315 (2) |
β (°) | 99.285 (2) |
V (Å3) | 1382.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.60 |
Crystal size (mm) | 0.06 × 0.05 × 0.05 |
|
Data collection |
Diffractometer | Bruker SMART 1000 area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.702, 0.803 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8455, 3113, 2578 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.650 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.062, 0.99 |
No. of reflections | 3113 |
No. of parameters | 212 |
No. of restraints | 15 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.07, −0.42 |
Selected geometric parameters (Å, º) topEu1—O1 | 2.412 (2) | Eu1—O6ii | 2.465 (3) |
Eu1—O2i | 2.430 (2) | Eu1—O7 | 2.471 (3) |
Eu1—O3 | 2.476 (2) | Eu1—O8iii | 2.492 (3) |
Eu1—O4i | 2.469 (2) | Eu1—O1W | 2.505 (3) |
Eu1—O5 | 2.430 (3) | | |
| | | |
O1—Eu1—O2i | 136.0 (1) | O3—Eu1—O7 | 73.5 (1) |
O1—Eu1—O3 | 66.4 (1) | O3—Eu1—O8iii | 136.0 (1) |
O1—Eu1—O4i | 72.7 (1) | O3—Eu1—O1W | 82.2 (1) |
O1—Eu1—O5 | 138.9 (1) | O4i—Eu1—O5 | 138.7 (1) |
O1—Eu1—O6ii | 123.9 (1) | O4i—Eu1—O6ii | 125.4 (1) |
O1—Eu1—O7 | 71.5 (1) | O4i—Eu1—O7 | 104.7 (1) |
O1—Eu1—O8iii | 111.5 (1) | O4i—Eu1—O8iii | 70.3 (1) |
O1—Eu1—O1W | 71.2 (1) | O4i—Eu1—O1W | 73.9 (1) |
O2i—Eu1—O3 | 144.2 (1) | O5—Eu1—O6ii | 65.9 (1) |
O2i—Eu1—O4i | 66.5 (1) | O5—Eu1—O7 | 74.1 (1) |
O2i—Eu1—O5 | 84.7 (1) | O5—Eu1—O8iii | 72.3 (1) |
O2i—Eu1—O6ii | 71.7 (1) | O5—Eu1—O1W | 132.7 (1) |
O2i—Eu1—O7 | 134.1 (1) | O6ii—Eu1—O7 | 129.7 (1) |
O2i—Eu1—O8iii | 69.7 (1) | O6ii—Eu1—O8iii | 124.5 (1) |
O2i—Eu1—O1W | 82.0 (1) | O6ii—Eu1—O1W | 66.8 (1) |
O3—Eu1—O4i | 137.5 (1) | O7—Eu1—O8iii | 65.2 (1) |
O3—Eu1—O5 | 82.7 (1) | O7—Eu1—O1W | 141.2 (1) |
O3—Eu1—O6ii | 72.5 (1) | O8iii—Eu1—O1W | 140.9 (1) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O2W | 0.85 (1) | 1.92 (1) | 2.759 (5) | 169 (4) |
O1W—H1W2···O2Wiv | 0.85 (1) | 2.05 (2) | 2.862 (5) | 162 (4) |
O2W—H2W2···O7i | 0.85 (1) | 2.30 (2) | 3.071 (5) | 151 (4) |
O2W—H2W2···O8i | 0.85 (1) | 2.37 (4) | 3.011 (4) | 133 (5) |
O3W—H3W1···O4v | 0.85 (1) | 2.02 (2) | 2.838 (5) | 162 (7) |
O3W—H3W2···O4W | 0.84 (1) | 2.00 (3) | 2.770 (6) | 151 (5) |
O4W—H4W1···O2iv | 0.85 (1) | 2.08 (2) | 2.893 (4) | 159 (5) |
O4W—H4W2···O3vi | 0.85 (1) | 2.12 (1) | 2.962 (5) | 173 (5) |
N1—H1N1···O3W | 0.85 (1) | 1.96 (1) | 2.792 (6) | 167 (4) |
N1—H1N2···O6ii | 0.85 (1) | 2.05 (2) | 2.879 (5) | 165 (5) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) x−1/2, −y+3/2, z−1/2; (vi) −x+1/2, y−1/2, −z+1/2. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Some rare earth/monovalent-cation oxalates contain water, and the compounds that are formulated as [M][(C2O4)2La].nH2O have been studied in order to understand the nature of the water molecules, as water is crucial to their applications. Such double oxalates have been structurally authenticated by both single-crystal and powder-diffraction methods; the ammonium derivative is a monohydrate, and the water molecule is involved in coordination to the Y atom in [NH4][(C2O4)2(H2O)Y] (MacDonald & Spink, 1967). The nine-coordinate metal atom displays capped trigonal–prismatic coordination. The caesium analogue also has the rare earth atom in such a geometry (Bataille et al., 2000), as does the trihydrated sodium salt (Bataille & Louër, 1999). Another aquadioxalatoyttrate, a propyl-1,2-diammonium salt, has two solvent water molecules that interact with the cation (Vaidhyanathan et al., 2001). Double salts with other nine-coordinate water-coordinated rare earths include the erbium (Steinfink & Brunton, 1970), lanthanum (Fourcade-Cavillou & Trombe, 2002), neodymium (Fourcade-Cavillou & Trombe, 2002; Kahwa et al., 1984), samarium, europium, gadolinium and terbium (Kahwa et al., 1984) complexes.
The title dimethylammonium aquadioxalatoeuropate(III) exists as the trihydrate, (I) (Fig. 1). The Eu atom is surrounded by the eight atoms of four oxalates and the water molecule in a capped trigonal–prismatic environment (Fig. 2). The cations and solvent water molecules interact with each other along the channels of the polymeric anion (Fig. 3); extensive hydrogen bonds (Table 2) give rise to a tightly held network structure that has no solvent-accessible cavities.