Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023367/bx2084sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023367/bx2084Isup2.hkl |
CCDC reference: 650702
Key indicators
- Single-crystal X-ray study
- T = 150 K
- Mean (C-C) = 0.003 Å
- R factor = 0.038
- wR factor = 0.094
- Data-to-parameter ratio = 16.1
checkCIF/PLATON results
No syntax errors found
Alert level A PLAT707_ALERT_1_A D...A Calc 17.600(4), Rep 2.819(2), Dev.. 3695.25 Sigma O9 -O5 1.555 4.575 PLAT707_ALERT_1_A D...A Calc 19.411(4), Rep 2.828(2), Dev.. 4145.75 Sigma O9 -O2 1.555 2.554 PLAT707_ALERT_1_A D...A Calc 19.704(4), Rep 2.927(2), Dev.. 4194.25 Sigma O10 -O7 1.555 1.555 PLAT707_ALERT_1_A D...A Calc 10.920(3), Rep 2.846(3), Dev.. 2691.33 Sigma O10 -O9 1.555 1.555 PLAT707_ALERT_1_A D...A Calc 24.709(4), Rep 3.124(2), Dev.. 5396.25 Sigma O11 -O10 1.555 4.676 PLAT707_ALERT_1_A D...A Calc 23.228(4), Rep 3.457(3), Dev.. 4942.75 Sigma C16 -O10 1.555 4.676 PLAT726_ALERT_1_A H...A Calc 17.89000, Rep 1.87000 Dev... 16.02 Ang. H9B -O5 1.555 4.575 PLAT726_ALERT_1_A H...A Calc 20.29000, Rep 1.90000 Dev... 18.39 Ang. H9A -O2 1.555 2.554 PLAT726_ALERT_1_A H...A Calc 18.89000, Rep 1.99000 Dev... 16.90 Ang. H10A -O7 1.555 1.555 PLAT726_ALERT_1_A H...A Calc 11.08000, Rep 1.90000 Dev... 9.18 Ang. H10B -O9 1.555 1.555 PLAT726_ALERT_1_A H...A Calc 23.76000, Rep 2.37000 Dev... 21.39 Ang. H11A -O10 1.555 4.676 PLAT726_ALERT_1_A H...A Calc 23.18000, Rep 2.57000 Dev... 20.61 Ang. H16B -O10 1.555 4.676 PLAT728_ALERT_1_A D-H..A Calc 70.00, Rep 176.70 Dev... 106.70 Deg. O9 -H9B -O5 1.555 1.555 4.575 PLAT728_ALERT_1_A D-H..A Calc 21.00, Rep 165.60 Dev... 144.60 Deg. O9 -H9A -O2 1.555 1.555 2.554 PLAT728_ALERT_1_A D-H..A Calc 149.00, Rep 167.40 Dev... 18.40 Deg. O10 -H10A -O7 1.555 1.555 1.555 PLAT728_ALERT_1_A D-H..A Calc 78.00, Rep 172.70 Dev... 94.70 Deg. O10 -H10B -O9 1.555 1.555 1.555 PLAT728_ALERT_1_A D-H..A Calc 174.00, Rep 136.30 Dev... 37.70 Deg. O11 -H11A -O10 1.555 1.555 4.676 PLAT728_ALERT_1_A D-H..A Calc 92.00, Rep 149.00 Dev... 57.00 Deg. C16 -H16B -O10 1.555 1.555 4.676
Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT432_ALERT_2_C Short Inter X...Y Contact C12 .. C14 .. 3.16 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 N2 -NI1 -N1 -C2 -114.20 0.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 26 N2 -NI1 -N1 -C6 60.60 0.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 31 N1 -NI1 -N2 -C9 11.20 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 36 N1 -NI1 -N2 -C13 -167.90 0.50 1.555 1.555 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.07
18 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 19 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
We have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylic acid, btcH4, to piperazine, pipz, and 1,10-phenanthroline, phen, resulted in the formation of novel self-assembled (pipzH2)(pydc) (Aghabozorg, Ghadermazi, Manteghi & Nakhjavan, 2006) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to many metallic ions (Aghabozorg, Ghasemikhah, Ghadermazi et al., 2006; Aghabozorg, Ghasemikhah, Soleimannejad et al., 2006).
For related literature, see: Aghabozorg, Aghajani & Sharif (2006); Aghabozorg, Zabihi, Ghadermazi, Attar Gharamaleki & Sheshmani (2006); Allen et al. (1987).
The proton-transfer ion pair was prepared by a reaction between piperazine and pyridine-2,6-dicarboxylic acid. Starting with a 1:1 molar ratio of the reactants in THF, a puffy white precipitate was obtained. By recrystallization in an aqueous solution, pale-yellow crystals were obtained. A solution of Ni(NO3)2.6H2O (145 mg, 0.5 mmol) in water (20 ml) was added to an aqueous solution of (pipzH2)(pydc) (253 mg, 1.0 mmol) in water (20 ml) in a 1:2 molar ratio. Green crystals of (I) suitable for X-ray characterization were obtained after a few days at room temperature.
Hydrogen atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å, and with U(H) constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom.
The intermolecular binding forces in supramolecular systems may consist of ion pairing, hydrogen bonding, hydrophobic or hydrophilic, host guest, π-π stacking and donor-acceptor interactions. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes.
Here, we report on the synthesis and X-ray crystal structure of the title compound, (I). The selected bond lengths, bond and torsion angles are given in Table 1 which are within normal ranges (Allen et al., 1987). Accordingto the crystal structure of (I), the NiII compound is composed of an anionic complex, [Ni(pydc)2]2–, piperazinediium as counter-ion, (pipzH2)2+, and four uncoordinated water molecules. Atoms N1 and N2 of the two (pydc)2– fragments occupy the axial positions, while atoms O1, O4, O5 and O8 form the equatorial plane. The N1—Ni1—N2 angle deviates slightly from linearity [172.66 (8)°]. Therefore, the coordination around NiII is distorted octahedral.
The O1—Ni1—O8 and O4—Ni1—O5 angles are equal to 87.00 (6) and 87.82 (6)°, respectively. On the other hand, O4—Ni1—O5—C8 and O5—Ni1—O4—C7 torsion angles are -92.26 (16)° and -84.08 (16)°, respectively indicating that two (pydc)2– units are almost perpendicular to each other (Table 1). Considerable π-π stacking interactions between two aromatic rings of (pydc)2–, with distances of 3.4686 (14) Å and 3.5034 (14) Å are observed (Fig. 2) (Aghabozorg, Aghajani & Sharif, 2006; Aghabozorg, Zabihi et al., 2006). In the crystal structure, the spaces between two layers of [Ni(pydc)2]2– fragments are filled with layers of (pipzH2)2+ cations and water molecules (Fig. 3). The most important features of the crystal structure of (I) is the presence of a large number of O—H···O, N—H···O and C—H···O hydrogen bonds, with D···A distances ranging from 2.696 (3) to 3.457 (3) Å between (pipzH2)2+ and [Ni(pydc)2]2– fragments and uncoordinated water molecules. (Table 2). Ion pairing and van der Waals interactions are also effective in the packing. These interactions result in the formation of a supramolecular structure (Fig. 4).
We have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylic acid, btcH4, to piperazine, pipz, and 1,10-phenanthroline, phen, resulted in the formation of novel self-assembled (pipzH2)(pydc) (Aghabozorg, Ghadermazi, Manteghi & Nakhjavan, 2006) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to many metallic ions (Aghabozorg, Ghasemikhah, Ghadermazi et al., 2006; Aghabozorg, Ghasemikhah, Soleimannejad et al., 2006).
For related literature, see: Aghabozorg, Aghajani & Sharif (2006); Aghabozorg, Zabihi, Ghadermazi, Attar Gharamaleki & Sheshmani (2006); Allen et al. (1987).
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.
(C4H12N2)[Ni(C7H3NO4)2]·4H2O | F(000) = 1144 |
Mr = 549.14 | Dx = 1.636 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9776 (11) Å | Cell parameters from 6417 reflections |
b = 13.2767 (19) Å | θ = 2.5–27.0° |
c = 21.054 (3) Å | µ = 0.94 mm−1 |
β = 90.502 (2)° | T = 150 K |
V = 2229.8 (5) Å3 | Block, green |
Z = 4 | 0.18 × 0.15 × 0.07 mm |
Bruker SMART area-detector diffractometer | 5111 independent reflections |
Radiation source: fine-focus sealed tube | 3612 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 100 pixels mm-1 | θmax = 27.6°, θmin = 1.8° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −17→17 |
Tmin = 0.849, Tmax = 0.937 | l = −27→27 |
25180 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0467P)2] where P = (Fo2 + 2Fc2)/3 |
5111 reflections | (Δ/σ)max < 0.001 |
318 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
(C4H12N2)[Ni(C7H3NO4)2]·4H2O | V = 2229.8 (5) Å3 |
Mr = 549.14 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.9776 (11) Å | µ = 0.94 mm−1 |
b = 13.2767 (19) Å | T = 150 K |
c = 21.054 (3) Å | 0.18 × 0.15 × 0.07 mm |
β = 90.502 (2)° |
Bruker SMART area-detector diffractometer | 5111 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3612 reflections with I > 2σ(I) |
Tmin = 0.849, Tmax = 0.937 | Rint = 0.054 |
25180 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.36 e Å−3 |
5111 reflections | Δρmin = −0.42 e Å−3 |
318 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.23343 (4) | 0.75474 (2) | 0.007996 (14) | 0.01605 (10) | |
O1 | 0.40312 (19) | 0.70749 (12) | −0.06451 (8) | 0.0202 (4) | |
O2 | 0.4609 (2) | 0.57156 (12) | −0.12315 (8) | 0.0223 (4) | |
O3 | −0.0547 (2) | 0.61563 (12) | 0.14314 (8) | 0.0218 (4) | |
O4 | 0.0453 (2) | 0.73511 (11) | 0.07875 (8) | 0.0205 (4) | |
O5 | 0.4136 (2) | 0.76423 (12) | 0.08329 (8) | 0.0214 (4) | |
O6 | 0.5285 (2) | 0.87901 (13) | 0.14854 (8) | 0.0256 (4) | |
O7 | 0.0134 (2) | 0.95380 (13) | −0.11768 (8) | 0.0256 (4) | |
O8 | 0.07588 (19) | 0.80978 (12) | −0.06660 (8) | 0.0204 (4) | |
O9 | 0.0331 (2) | 0.11768 (14) | 0.32180 (9) | 0.0364 (5) | |
H9B | 0.0478 | 0.1686 | 0.3531 | 0.048 (9)* | |
H9A | −0.0006 | 0.0605 | 0.3456 | 0.077 (12)* | |
O10 | 0.7399 (2) | 0.44110 (14) | 0.71874 (9) | 0.0328 (5) | |
H10A | 0.6671 | 0.4377 | 0.6829 | 0.039* | |
H10B | 0.6714 | 0.4158 | 0.7518 | 0.039* | |
O11 | −0.0361 (2) | 0.43955 (13) | 0.21897 (8) | 0.0304 (4) | |
H11A | 0.0223 | 0.4592 | 0.2565 | 0.036* | |
H11B | −0.0404 | 0.4999 | 0.1947 | 0.036* | |
O12 | 0.1234 (2) | 0.26988 (13) | 0.16332 (9) | 0.0291 (4) | |
H12B | 0.0522 | 0.2448 | 0.1305 | 0.035* | |
H12A | 0.0542 | 0.3246 | 0.1758 | 0.035* | |
N1 | 0.2149 (2) | 0.60746 (14) | 0.01186 (9) | 0.0156 (4) | |
N2 | 0.2654 (2) | 0.90052 (14) | 0.01493 (9) | 0.0152 (4) | |
N3 | 0.4462 (2) | 0.27255 (15) | 0.20231 (9) | 0.0207 (5) | |
H3B | 0.4720 | 0.3226 | 0.1753 | 0.025* | |
H3A | 0.3530 | 0.2441 | 0.1860 | 0.025* | |
N4 | 0.7096 (2) | 0.27635 (14) | 0.29515 (9) | 0.0195 (5) | |
H4B | 0.8001 | 0.3024 | 0.3150 | 0.023* | |
H4A | 0.6636 | 0.2288 | 0.3200 | 0.023* | |
C1 | 0.3960 (3) | 0.61423 (18) | −0.07599 (11) | 0.0176 (5) | |
C2 | 0.3014 (3) | 0.55085 (17) | −0.02846 (11) | 0.0159 (5) | |
C3 | 0.3007 (3) | 0.44672 (18) | −0.02384 (11) | 0.0192 (5) | |
H3 | 0.3609 | 0.4062 | −0.0531 | 0.023* | |
C4 | 0.2093 (3) | 0.40361 (18) | 0.02486 (11) | 0.0200 (5) | |
H4 | 0.2071 | 0.3325 | 0.0295 | 0.024* | |
C5 | 0.1213 (3) | 0.46372 (17) | 0.06671 (11) | 0.0192 (5) | |
H5 | 0.0595 | 0.4345 | 0.1004 | 0.023* | |
C6 | 0.1251 (3) | 0.56680 (17) | 0.05859 (11) | 0.0167 (5) | |
C7 | 0.0316 (3) | 0.64473 (17) | 0.09696 (11) | 0.0176 (5) | |
C8 | 0.4416 (3) | 0.85382 (18) | 0.10199 (11) | 0.0184 (5) | |
C9 | 0.3618 (3) | 0.93598 (17) | 0.06175 (11) | 0.0164 (5) | |
C10 | 0.3872 (3) | 1.03821 (17) | 0.06906 (11) | 0.0182 (5) | |
H10 | 0.4550 | 1.0635 | 0.1028 | 0.022* | |
C11 | 0.3114 (3) | 1.10280 (18) | 0.02607 (12) | 0.0211 (5) | |
H11 | 0.3280 | 1.1734 | 0.0299 | 0.025* | |
C12 | 0.2111 (3) | 1.06511 (17) | −0.02263 (11) | 0.0185 (5) | |
H12 | 0.1590 | 1.1090 | −0.0525 | 0.022* | |
C13 | 0.1889 (3) | 0.96183 (17) | −0.02646 (11) | 0.0164 (5) | |
C14 | 0.0830 (3) | 0.90522 (18) | −0.07527 (11) | 0.0178 (5) | |
C15 | 0.5776 (3) | 0.19368 (18) | 0.20308 (12) | 0.0216 (5) | |
H15A | 0.5970 | 0.1697 | 0.1592 | 0.026* | |
H15B | 0.5393 | 0.1357 | 0.2288 | 0.026* | |
C16 | 0.4186 (3) | 0.31777 (19) | 0.26631 (11) | 0.0223 (5) | |
H16A | 0.3736 | 0.2661 | 0.2954 | 0.027* | |
H16B | 0.3357 | 0.3730 | 0.2630 | 0.027* | |
C17 | 0.5813 (3) | 0.35802 (18) | 0.29238 (12) | 0.0245 (6) | |
H17A | 0.6217 | 0.4134 | 0.2650 | 0.029* | |
H17B | 0.5635 | 0.3855 | 0.3355 | 0.029* | |
C18 | 0.7395 (3) | 0.23442 (18) | 0.23072 (12) | 0.0206 (5) | |
H18A | 0.8237 | 0.1798 | 0.2334 | 0.025* | |
H18B | 0.7841 | 0.2878 | 0.2027 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01895 (16) | 0.01449 (16) | 0.01470 (17) | −0.00075 (13) | −0.00121 (11) | −0.00007 (13) |
O1 | 0.0234 (9) | 0.0173 (9) | 0.0199 (9) | −0.0017 (7) | 0.0036 (7) | −0.0006 (7) |
O2 | 0.0268 (9) | 0.0224 (9) | 0.0176 (9) | 0.0025 (7) | 0.0040 (7) | −0.0021 (7) |
O3 | 0.0284 (9) | 0.0205 (9) | 0.0164 (9) | 0.0003 (7) | 0.0051 (7) | 0.0011 (7) |
O4 | 0.0263 (9) | 0.0180 (9) | 0.0173 (9) | 0.0015 (7) | 0.0032 (7) | −0.0002 (7) |
O5 | 0.0274 (9) | 0.0177 (9) | 0.0190 (9) | 0.0029 (7) | −0.0055 (7) | 0.0010 (7) |
O6 | 0.0270 (9) | 0.0275 (10) | 0.0221 (10) | 0.0057 (8) | −0.0125 (8) | −0.0034 (8) |
O7 | 0.0295 (10) | 0.0274 (10) | 0.0197 (10) | −0.0041 (8) | −0.0115 (8) | 0.0067 (8) |
O8 | 0.0229 (9) | 0.0189 (9) | 0.0192 (10) | −0.0030 (7) | −0.0063 (7) | −0.0005 (7) |
O9 | 0.0616 (13) | 0.0251 (10) | 0.0226 (11) | −0.0076 (9) | 0.0043 (10) | −0.0009 (9) |
O10 | 0.0251 (10) | 0.0455 (12) | 0.0277 (11) | −0.0005 (8) | −0.0042 (8) | −0.0036 (9) |
O11 | 0.0461 (11) | 0.0246 (10) | 0.0204 (10) | −0.0028 (8) | −0.0056 (9) | 0.0027 (8) |
O12 | 0.0230 (9) | 0.0279 (10) | 0.0363 (11) | 0.0005 (7) | −0.0109 (8) | −0.0049 (8) |
N1 | 0.0179 (10) | 0.0162 (10) | 0.0125 (10) | −0.0002 (8) | −0.0020 (8) | −0.0006 (8) |
N2 | 0.0145 (9) | 0.0184 (10) | 0.0126 (10) | −0.0002 (8) | −0.0014 (8) | −0.0009 (8) |
N3 | 0.0185 (10) | 0.0279 (12) | 0.0157 (11) | −0.0053 (8) | −0.0028 (8) | 0.0014 (9) |
N4 | 0.0199 (10) | 0.0206 (11) | 0.0178 (11) | −0.0060 (8) | −0.0058 (9) | 0.0004 (8) |
C1 | 0.0147 (11) | 0.0203 (13) | 0.0179 (13) | 0.0004 (9) | −0.0025 (10) | 0.0014 (10) |
C2 | 0.0134 (11) | 0.0186 (12) | 0.0156 (12) | −0.0010 (9) | −0.0018 (9) | −0.0023 (10) |
C3 | 0.0171 (12) | 0.0212 (12) | 0.0193 (13) | 0.0016 (10) | −0.0011 (10) | −0.0041 (10) |
C4 | 0.0216 (12) | 0.0161 (12) | 0.0222 (14) | 0.0019 (10) | −0.0024 (10) | 0.0025 (10) |
C5 | 0.0223 (12) | 0.0196 (12) | 0.0157 (13) | −0.0010 (10) | −0.0006 (10) | 0.0031 (10) |
C6 | 0.0158 (11) | 0.0210 (12) | 0.0132 (12) | −0.0004 (9) | −0.0023 (9) | 0.0009 (10) |
C7 | 0.0198 (12) | 0.0180 (12) | 0.0151 (13) | −0.0005 (10) | −0.0031 (10) | −0.0018 (10) |
C8 | 0.0167 (12) | 0.0224 (13) | 0.0161 (13) | 0.0019 (10) | −0.0001 (10) | 0.0005 (10) |
C9 | 0.0150 (11) | 0.0202 (12) | 0.0141 (12) | 0.0024 (9) | −0.0002 (9) | −0.0019 (10) |
C10 | 0.0179 (11) | 0.0189 (12) | 0.0179 (13) | −0.0011 (10) | −0.0038 (10) | −0.0041 (10) |
C11 | 0.0207 (12) | 0.0159 (12) | 0.0266 (15) | −0.0006 (10) | 0.0019 (11) | −0.0027 (10) |
C12 | 0.0177 (12) | 0.0196 (13) | 0.0183 (13) | 0.0016 (10) | 0.0000 (10) | 0.0049 (10) |
C13 | 0.0160 (11) | 0.0207 (12) | 0.0125 (12) | −0.0010 (9) | 0.0016 (9) | 0.0020 (10) |
C14 | 0.0157 (11) | 0.0239 (13) | 0.0138 (13) | −0.0011 (10) | 0.0011 (9) | 0.0008 (10) |
C15 | 0.0244 (13) | 0.0207 (13) | 0.0199 (14) | −0.0019 (10) | 0.0003 (11) | −0.0021 (11) |
C16 | 0.0232 (13) | 0.0267 (14) | 0.0169 (13) | 0.0012 (11) | 0.0013 (10) | 0.0003 (11) |
C17 | 0.0310 (14) | 0.0219 (13) | 0.0205 (14) | 0.0026 (11) | −0.0012 (11) | −0.0036 (11) |
C18 | 0.0192 (12) | 0.0227 (13) | 0.0198 (13) | 0.0002 (10) | 0.0001 (10) | 0.0002 (10) |
Ni1—N2 | 1.9575 (19) | N4—C17 | 1.492 (3) |
Ni1—N1 | 1.9626 (19) | N4—H4B | 0.9000 |
Ni1—O8 | 2.1320 (16) | N4—H4A | 0.9000 |
Ni1—O5 | 2.1340 (16) | C1—C2 | 1.514 (3) |
Ni1—O4 | 2.1400 (16) | C2—C3 | 1.386 (3) |
Ni1—O1 | 2.1429 (16) | C3—C4 | 1.387 (3) |
O1—C1 | 1.263 (3) | C3—H3 | 0.9500 |
O2—C1 | 1.259 (3) | C4—C5 | 1.385 (3) |
O3—C7 | 1.257 (3) | C4—H4 | 0.9500 |
O4—C7 | 1.265 (3) | C5—C6 | 1.380 (3) |
O5—C8 | 1.272 (3) | C5—H5 | 0.9500 |
O6—C8 | 1.242 (3) | C6—C7 | 1.513 (3) |
O7—C14 | 1.230 (3) | C8—C9 | 1.518 (3) |
O8—C14 | 1.282 (3) | C9—C10 | 1.381 (3) |
O9—H9B | 0.9500 | C10—C11 | 1.382 (3) |
O9—H9A | 0.9501 | C10—H10 | 0.9500 |
O10—H10A | 0.9501 | C11—C12 | 1.388 (3) |
O10—H10B | 0.9499 | C11—H11 | 0.9500 |
O11—H11A | 0.9500 | C12—C13 | 1.385 (3) |
O11—H11B | 0.9501 | C12—H12 | 0.9500 |
O12—H12B | 0.9500 | C13—C14 | 1.523 (3) |
O12—H12A | 0.9499 | C15—C18 | 1.512 (3) |
N1—C2 | 1.331 (3) | C15—H15A | 0.9900 |
N1—C6 | 1.336 (3) | C15—H15B | 0.9900 |
N2—C9 | 1.331 (3) | C16—C17 | 1.503 (3) |
N2—C13 | 1.336 (3) | C16—H16A | 0.9900 |
N3—C15 | 1.481 (3) | C16—H16B | 0.9900 |
N3—C16 | 1.493 (3) | C17—H17A | 0.9900 |
N3—H3B | 0.9001 | C17—H17B | 0.9900 |
N3—H3A | 0.9000 | C18—H18A | 0.9900 |
N4—C18 | 1.487 (3) | C18—H18B | 0.9900 |
N2—Ni1—N1 | 172.66 (8) | C6—C5—H5 | 120.6 |
N2—Ni1—O8 | 77.97 (7) | C4—C5—H5 | 120.6 |
N1—Ni1—O8 | 109.14 (7) | N1—C6—C5 | 120.3 (2) |
N2—Ni1—O5 | 78.45 (7) | N1—C6—C7 | 112.8 (2) |
N1—Ni1—O5 | 94.50 (7) | C5—C6—C7 | 126.9 (2) |
O8—Ni1—O5 | 156.31 (6) | O3—C7—O4 | 125.1 (2) |
N2—Ni1—O4 | 99.22 (7) | O3—C7—C6 | 118.6 (2) |
N1—Ni1—O4 | 78.25 (7) | O4—C7—C6 | 116.3 (2) |
O8—Ni1—O4 | 98.16 (6) | O6—C8—O5 | 126.3 (2) |
O5—Ni1—O4 | 87.82 (6) | O6—C8—C9 | 118.4 (2) |
N2—Ni1—O1 | 105.06 (7) | O5—C8—C9 | 115.3 (2) |
N1—Ni1—O1 | 77.65 (7) | N2—C9—C10 | 120.9 (2) |
O8—Ni1—O1 | 87.00 (6) | N2—C9—C8 | 113.3 (2) |
O5—Ni1—O1 | 96.95 (6) | C10—C9—C8 | 125.7 (2) |
O4—Ni1—O1 | 155.72 (6) | C9—C10—C11 | 118.3 (2) |
C1—O1—Ni1 | 113.30 (14) | C9—C10—H10 | 120.9 |
C7—O4—Ni1 | 112.92 (14) | C11—C10—H10 | 120.9 |
C8—O5—Ni1 | 113.61 (14) | C10—C11—C12 | 120.4 (2) |
C14—O8—Ni1 | 114.66 (14) | C10—C11—H11 | 119.8 |
H9B—O9—H9A | 103.8 | C12—C11—H11 | 119.8 |
H10A—O10—H10B | 102.3 | C13—C12—C11 | 118.2 (2) |
H11A—O11—H11B | 103.3 | C13—C12—H12 | 120.9 |
H12B—O12—H12A | 97.1 | C11—C12—H12 | 120.9 |
C2—N1—C6 | 121.7 (2) | N2—C13—C12 | 120.5 (2) |
C2—N1—Ni1 | 119.77 (15) | N2—C13—C14 | 112.8 (2) |
C6—N1—Ni1 | 118.30 (15) | C12—C13—C14 | 126.7 (2) |
C9—N2—C13 | 121.7 (2) | O7—C14—O8 | 127.0 (2) |
C9—N2—Ni1 | 118.62 (15) | O7—C14—C13 | 118.4 (2) |
C13—N2—Ni1 | 119.71 (15) | O8—C14—C13 | 114.6 (2) |
C15—N3—C16 | 112.59 (18) | N3—C15—C18 | 110.69 (19) |
C15—N3—H3B | 111.3 | N3—C15—H15A | 109.5 |
C16—N3—H3B | 108.0 | C18—C15—H15A | 109.5 |
C15—N3—H3A | 106.8 | N3—C15—H15B | 109.5 |
C16—N3—H3A | 112.7 | C18—C15—H15B | 109.5 |
H3B—N3—H3A | 105.2 | H15A—C15—H15B | 108.1 |
C18—N4—C17 | 110.60 (18) | N3—C16—C17 | 109.8 (2) |
C18—N4—H4B | 115.7 | N3—C16—H16A | 109.7 |
C17—N4—H4B | 106.6 | C17—C16—H16A | 109.7 |
C18—N4—H4A | 109.6 | N3—C16—H16B | 109.7 |
C17—N4—H4A | 104.4 | C17—C16—H16B | 109.7 |
H4B—N4—H4A | 109.2 | H16A—C16—H16B | 108.2 |
O2—C1—O1 | 125.0 (2) | N4—C17—C16 | 110.2 (2) |
O2—C1—C2 | 118.8 (2) | N4—C17—H17A | 109.6 |
O1—C1—C2 | 116.1 (2) | C16—C17—H17A | 109.6 |
N1—C2—C3 | 121.1 (2) | N4—C17—H17B | 109.6 |
N1—C2—C1 | 111.8 (2) | C16—C17—H17B | 109.6 |
C3—C2—C1 | 127.1 (2) | H17A—C17—H17B | 108.1 |
C2—C3—C4 | 117.8 (2) | N4—C18—C15 | 109.97 (19) |
C2—C3—H3 | 121.1 | N4—C18—H18A | 109.7 |
C4—C3—H3 | 121.1 | C15—C18—H18A | 109.7 |
C5—C4—C3 | 120.4 (2) | N4—C18—H18B | 109.7 |
C5—C4—H4 | 119.8 | C15—C18—H18B | 109.7 |
C3—C4—H4 | 119.8 | H18A—C18—H18B | 108.2 |
C6—C5—C4 | 118.8 (2) | ||
N2—Ni1—O1—C1 | −178.68 (15) | O1—C1—C2—C3 | −167.5 (2) |
N1—Ni1—O1—C1 | 8.35 (15) | N1—C2—C3—C4 | −1.1 (3) |
O8—Ni1—O1—C1 | −101.99 (16) | C1—C2—C3—C4 | 177.8 (2) |
O5—Ni1—O1—C1 | 101.46 (16) | C2—C3—C4—C5 | 0.5 (3) |
O4—Ni1—O1—C1 | 1.3 (3) | C3—C4—C5—C6 | 0.6 (3) |
N2—Ni1—O4—C7 | −162.01 (16) | C2—N1—C6—C5 | 0.7 (3) |
N1—Ni1—O4—C7 | 10.98 (16) | Ni1—N1—C6—C5 | −173.99 (17) |
O8—Ni1—O4—C7 | 118.95 (16) | C2—N1—C6—C7 | −177.69 (19) |
O5—Ni1—O4—C7 | −84.08 (16) | Ni1—N1—C6—C7 | 7.6 (2) |
O1—Ni1—O4—C7 | 18.0 (3) | C4—C5—C6—N1 | −1.3 (3) |
N2—Ni1—O5—C8 | 7.61 (16) | C4—C5—C6—C7 | 176.9 (2) |
N1—Ni1—O5—C8 | −170.29 (16) | Ni1—O4—C7—O3 | 170.98 (18) |
O8—Ni1—O5—C8 | 13.2 (3) | Ni1—O4—C7—C6 | −10.2 (2) |
O4—Ni1—O5—C8 | −92.26 (16) | N1—C6—C7—O3 | −178.59 (19) |
O1—Ni1—O5—C8 | 111.63 (16) | C5—C6—C7—O3 | 3.1 (4) |
N2—Ni1—O8—C14 | 4.62 (15) | N1—C6—C7—O4 | 2.5 (3) |
N1—Ni1—O8—C14 | −177.30 (15) | C5—C6—C7—O4 | −175.8 (2) |
O5—Ni1—O8—C14 | −1.0 (3) | Ni1—O5—C8—O6 | 172.99 (19) |
O4—Ni1—O8—C14 | 102.37 (16) | Ni1—O5—C8—C9 | −8.2 (2) |
O1—Ni1—O8—C14 | −101.48 (16) | C13—N2—C9—C10 | −0.4 (3) |
N2—Ni1—N1—C2 | −114.2 (6) | Ni1—N2—C9—C10 | −179.45 (17) |
O8—Ni1—N1—C2 | 80.63 (17) | C13—N2—C9—C8 | −177.99 (19) |
O5—Ni1—N1—C2 | −97.89 (17) | Ni1—N2—C9—C8 | 2.9 (2) |
O4—Ni1—N1—C2 | 175.29 (18) | O6—C8—C9—N2 | −177.1 (2) |
O1—Ni1—N1—C2 | −1.75 (16) | O5—C8—C9—N2 | 3.9 (3) |
N2—Ni1—N1—C6 | 60.6 (6) | O6—C8—C9—C10 | 5.4 (3) |
O8—Ni1—N1—C6 | −104.56 (16) | O5—C8—C9—C10 | −173.5 (2) |
O5—Ni1—N1—C6 | 76.92 (16) | N2—C9—C10—C11 | −0.7 (3) |
O4—Ni1—N1—C6 | −9.90 (16) | C8—C9—C10—C11 | 176.6 (2) |
O1—Ni1—N1—C6 | 173.06 (17) | C9—C10—C11—C12 | 0.7 (3) |
N1—Ni1—N2—C9 | 11.2 (7) | C10—C11—C12—C13 | 0.3 (3) |
O8—Ni1—N2—C9 | 176.82 (17) | C9—N2—C13—C12 | 1.5 (3) |
O5—Ni1—N2—C9 | −5.48 (16) | Ni1—N2—C13—C12 | −179.48 (17) |
O4—Ni1—N2—C9 | 80.37 (16) | C9—N2—C13—C14 | −179.07 (19) |
O1—Ni1—N2—C9 | −99.65 (16) | Ni1—N2—C13—C14 | 0.0 (2) |
N1—Ni1—N2—C13 | −167.9 (5) | C11—C12—C13—N2 | −1.4 (3) |
O8—Ni1—N2—C13 | −2.27 (16) | C11—C12—C13—C14 | 179.2 (2) |
O5—Ni1—N2—C13 | 175.44 (17) | Ni1—O8—C14—O7 | 174.76 (19) |
O4—Ni1—N2—C13 | −98.72 (16) | Ni1—O8—C14—C13 | −5.8 (2) |
O1—Ni1—N2—C13 | 81.26 (17) | N2—C13—C14—O7 | −176.5 (2) |
Ni1—O1—C1—O2 | 167.25 (18) | C12—C13—C14—O7 | 3.0 (3) |
Ni1—O1—C1—C2 | −12.8 (2) | N2—C13—C14—O8 | 4.1 (3) |
C6—N1—C2—C3 | 0.5 (3) | C12—C13—C14—O8 | −176.5 (2) |
Ni1—N1—C2—C3 | 175.12 (16) | C16—N3—C15—C18 | −55.1 (3) |
C6—N1—C2—C1 | −178.59 (19) | C15—N3—C16—C17 | 55.5 (3) |
Ni1—N1—C2—C1 | −4.0 (2) | C18—N4—C17—C16 | 59.7 (2) |
O2—C1—C2—N1 | −168.6 (2) | N3—C16—C17—N4 | −57.0 (3) |
O1—C1—C2—N1 | 11.5 (3) | C17—N4—C18—C15 | −58.5 (2) |
O2—C1—C2—C3 | 12.4 (3) | N3—C15—C18—N4 | 55.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O5i | 0.95 | 1.87 | 2.819 (2) | 177 |
O9—H9A···O2ii | 0.95 | 1.90 | 2.828 (2) | 166 |
O10—H10A···O7 | 0.95 | 1.99 | 2.927 (2) | 167 |
O10—H10B···O9 | 0.95 | 1.90 | 2.846 (3) | 173 |
O11—H11A···O6iii | 0.95 | 2.30 | 2.903 (2) | 120 |
O11—H11A···O10iv | 0.95 | 2.37 | 3.124 (2) | 136 |
O11—H11B···O3 | 0.95 | 1.88 | 2.834 (2) | 177 |
O12—H12B···O8v | 0.95 | 1.83 | 2.781 (2) | 177 |
O12—H12A···O11 | 0.95 | 1.92 | 2.844 (2) | 164 |
N3—H3B···O2vi | 0.90 | 1.86 | 2.763 (3) | 176 |
N3—H3B···O1vi | 0.90 | 2.58 | 3.161 (3) | 123 |
N3—H3A···O12 | 0.90 | 1.92 | 2.696 (2) | 144 |
N4—H4B···O6vii | 0.90 | 1.86 | 2.754 (2) | 170 |
N4—H4A···O3iii | 0.90 | 1.90 | 2.792 (3) | 169 |
C15—H15A···O1vi | 0.99 | 2.58 | 3.204 (3) | 121 |
C16—H16B···O10iv | 0.99 | 2.57 | 3.457 (3) | 149 |
C17—H17B···O7iv | 0.99 | 2.39 | 3.184 (3) | 137 |
C18—H18B···O11viii | 0.99 | 2.50 | 3.270 (3) | 135 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1/2, y+1/2, −z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) −x, −y+1, −z; (vi) −x+1, −y+1, −z; (vii) −x+3/2, y−1/2, −z+1/2; (viii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | (C4H12N2)[Ni(C7H3NO4)2]·4H2O |
Mr | 549.14 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 7.9776 (11), 13.2767 (19), 21.054 (3) |
β (°) | 90.502 (2) |
V (Å3) | 2229.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.94 |
Crystal size (mm) | 0.18 × 0.15 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.849, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25180, 5111, 3612 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.094, 1.01 |
No. of reflections | 5111 |
No. of parameters | 318 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.42 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.
Ni1—N2 | 1.9575 (19) | Ni1—O5 | 2.1340 (16) |
Ni1—N1 | 1.9626 (19) | Ni1—O4 | 2.1400 (16) |
Ni1—O8 | 2.1320 (16) | Ni1—O1 | 2.1429 (16) |
N2—Ni1—N1 | 172.66 (8) | O8—Ni1—O1 | 87.00 (6) |
O8—Ni1—O5 | 156.31 (6) | O4—Ni1—O1 | 155.72 (6) |
O5—Ni1—O4 | 87.82 (6) | ||
O5—Ni1—O4—C7 | −84.08 (16) | O4—Ni1—O5—C8 | −92.26 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9B···O5i | 0.95 | 1.87 | 2.819 (2) | 176.7 |
O9—H9A···O2ii | 0.95 | 1.90 | 2.828 (2) | 165.6 |
O10—H10A···O7 | 0.95 | 1.99 | 2.927 (2) | 167.4 |
O10—H10B···O9 | 0.95 | 1.90 | 2.846 (3) | 172.7 |
O11—H11A···O6iii | 0.95 | 2.30 | 2.903 (2) | 120.4 |
O11—H11A···O10iv | 0.95 | 2.37 | 3.124 (2) | 136.3 |
O11—H11B···O3 | 0.95 | 1.88 | 2.834 (2) | 176.9 |
O12—H12B···O8v | 0.95 | 1.83 | 2.781 (2) | 176.5 |
O12—H12A···O11 | 0.95 | 1.92 | 2.844 (2) | 163.6 |
N3—H3B···O2vi | 0.90 | 1.86 | 2.763 (3) | 175.8 |
N3—H3B···O1vi | 0.90 | 2.58 | 3.161 (3) | 123.3 |
N3—H3A···O12 | 0.90 | 1.92 | 2.696 (2) | 143.5 |
N4—H4B···O6vii | 0.90 | 1.86 | 2.754 (2) | 169.5 |
N4—H4A···O3iii | 0.90 | 1.90 | 2.792 (3) | 168.6 |
C15—H15A···O1vi | 0.99 | 2.58 | 3.204 (3) | 121 |
C16—H16B···O10iv | 0.99 | 2.57 | 3.457 (3) | 149 |
C17—H17B···O7iv | 0.99 | 2.39 | 3.184 (3) | 137 |
C18—H18B···O11viii | 0.99 | 2.50 | 3.270 (3) | 135 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1/2, y+1/2, −z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) −x, −y+1, −z; (vi) −x+1, −y+1, −z; (vii) −x+3/2, y−1/2, −z+1/2; (viii) x+1, y, z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
The intermolecular binding forces in supramolecular systems may consist of ion pairing, hydrogen bonding, hydrophobic or hydrophilic, host guest, π-π stacking and donor-acceptor interactions. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes.
Here, we report on the synthesis and X-ray crystal structure of the title compound, (I). The selected bond lengths, bond and torsion angles are given in Table 1 which are within normal ranges (Allen et al., 1987). Accordingto the crystal structure of (I), the NiII compound is composed of an anionic complex, [Ni(pydc)2]2–, piperazinediium as counter-ion, (pipzH2)2+, and four uncoordinated water molecules. Atoms N1 and N2 of the two (pydc)2– fragments occupy the axial positions, while atoms O1, O4, O5 and O8 form the equatorial plane. The N1—Ni1—N2 angle deviates slightly from linearity [172.66 (8)°]. Therefore, the coordination around NiII is distorted octahedral.
The O1—Ni1—O8 and O4—Ni1—O5 angles are equal to 87.00 (6) and 87.82 (6)°, respectively. On the other hand, O4—Ni1—O5—C8 and O5—Ni1—O4—C7 torsion angles are -92.26 (16)° and -84.08 (16)°, respectively indicating that two (pydc)2– units are almost perpendicular to each other (Table 1). Considerable π-π stacking interactions between two aromatic rings of (pydc)2–, with distances of 3.4686 (14) Å and 3.5034 (14) Å are observed (Fig. 2) (Aghabozorg, Aghajani & Sharif, 2006; Aghabozorg, Zabihi et al., 2006). In the crystal structure, the spaces between two layers of [Ni(pydc)2]2– fragments are filled with layers of (pipzH2)2+ cations and water molecules (Fig. 3). The most important features of the crystal structure of (I) is the presence of a large number of O—H···O, N—H···O and C—H···O hydrogen bonds, with D···A distances ranging from 2.696 (3) to 3.457 (3) Å between (pipzH2)2+ and [Ni(pydc)2]2– fragments and uncoordinated water molecules. (Table 2). Ion pairing and van der Waals interactions are also effective in the packing. These interactions result in the formation of a supramolecular structure (Fig. 4).