Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
LexA is a protein that is involved in the SOS response. The protein from Mycobacterium tuberculosis and its mutants have been biochemically characterized and the structures of their catalytic segments have been determined. The protein is made up of an N-terminal segment, which includes the DNA-binding domain, and a C-terminal segment encompassing much of the catalytic domain. The two segments are defined by a cleavage site. Full-length LexA, the two segments, two point mutants involving changes in the active-site residues (S160A and K197A) and another mutant involving a change at the cleavage site (G126D) were cloned and purified. The wild-type protein autocleaves at basic pH, while the mutants do not. The wild-type and the mutant proteins dimerize and bind DNA with equal facility. The C-terminal segment also dimerizes, and it also shows a tendency to form tetramers. The C-terminal segment readily crystallized. The crystals obtained from attempts involving the full-length protein and its mutants contained only the C-terminal segment including the catalytic core and a few residues preceding it, in a dimeric or tetrameric form, indicating protein cleavage during the long period involved in crystal formation. Modes of tetramerization of the full-length protein similar to those observed for the catalytic core are feasible. A complex of M. tuberculosis LexA and the cognate SOS box could be modeled in which the mutual orientation of the two N-terminal domains differs from that in the Escherichia coli LexA–DNA complex. These results represent the first thorough characterization of M. tuberculosis LexA and provide definitive information on its structure and assembly. They also provide leads for further exploration of this important protein.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds