Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C21H20O8, is the mixed orthocarbonic acid ester of the alcohol components benzene-1,2-diol and 4,6-O-benzyl­idene-1-O-methyl-α-D-glucopyran­oside. The compound represents the first example of a structurally characterized carbohydrate ester of orthocarbonic acid. Both oxacyclic six-membered rings in the structure adopt a chair conformation. The puckered five-membered ring at the spiro centre is present in a twist conformation. No special inter­actions are observed in the mol­ecular packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045266/cf2136sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045266/cf2136Isup2.hkl
Contains datablock I

CCDC reference: 663818

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.043
  • wR factor = 0.101
  • Data-to-parameter ratio = 8.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.59 From the CIF: _reflns_number_total 2340 Count of symmetry unique reflns 2364 Completeness (_total/calc) 98.98% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C15 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C31 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The spirocyclic orthocarbonate derived from benzene-1,2-diol and 4,6-O-benzylidene-1-O-methyl α-D-glucopyranoside has been prepared to obtain NMR data and structural details for comparison with analogous silicon compounds. In the centre of the molecular structure of (I) a carbon atom is bonded to a benzene-1,2-dioxy group and to the vicinal, trans-configured, 2,3-dioxy function derived from 4,6-O-benzylated methyl α-D-glucopyranoside. Both oxacyclic six-membered rings in the structure adopt a chair conformation. The puckered five-membered ring at the spiro centre is present in a twist conformation.

The molecular packing shows clustering of the aromatic groups about the twofold axes parallel to b. While two of these rings stem from the carbohydrate's protecting group, the other two are provided by phenylene residues.

Related literature top

The compound was prepared according to the procedure described by Mues & Buysch (1990). A comparable spirocyclic orthocarbonate has been described recently (Betz & Klüfers, 2007).

Experimental top

The compound was obtained upon reaction of equimolar amounts of 2,2-dichlorobenzo[1.3]dioxole and 4,6-O-benzylidene-methyl-α-D-glucopyranoside in the presence of pyridine in dry dichloromethane. Crystals suitable for X-ray analysis were obtained after aqueous workup and subsequent recrystallization of the crude reaction product from hot ethyl acetate.

Refinement top

All H atoms were located in a difference map and refined as riding on their parent atoms with C—H = 0.95–1.00 Å. One common isotropic displacement parameter for all H atoms was refined to Uiso(H) = 0.046 (2).

Due to the absence of significant anomalous scattering, Friedel opposites (1736 pairs) have been merged. The absolute configuration is assigned from the carbohydrate starting material.

Structure description top

The spirocyclic orthocarbonate derived from benzene-1,2-diol and 4,6-O-benzylidene-1-O-methyl α-D-glucopyranoside has been prepared to obtain NMR data and structural details for comparison with analogous silicon compounds. In the centre of the molecular structure of (I) a carbon atom is bonded to a benzene-1,2-dioxy group and to the vicinal, trans-configured, 2,3-dioxy function derived from 4,6-O-benzylated methyl α-D-glucopyranoside. Both oxacyclic six-membered rings in the structure adopt a chair conformation. The puckered five-membered ring at the spiro centre is present in a twist conformation.

The molecular packing shows clustering of the aromatic groups about the twofold axes parallel to b. While two of these rings stem from the carbohydrate's protecting group, the other two are provided by phenylene residues.

The compound was prepared according to the procedure described by Mues & Buysch (1990). A comparable spirocyclic orthocarbonate has been described recently (Betz & Klüfers, 2007).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed along [010].
4,6-O-Benzylidene-1-O-methyl-2,3-deoxy-α-D-glucopyranos-2,3-diyl- 1',2'-phenylene orthocarbonate top
Crystal data top
C21H20O8F(000) = 840
Mr = 400.37Dx = 1.455 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 11294 reflections
a = 27.8221 (12) Åθ = 3.1–27.5°
b = 5.1082 (1) ŵ = 0.11 mm1
c = 13.0090 (5) ÅT = 200 K
β = 98.710 (2)°Block, colourless
V = 1827.53 (11) Å30.13 × 0.07 × 0.04 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
2340 independent reflections
Radiation source: fine-focus sealed tube1770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 27.6°, θmin = 3.1°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 3636
Tmin = 0.985, Tmax = 0.996k = 66
17337 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.101Only H-atom displacement parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.4733P]
where P = (Fo2 + 2Fc2)/3
2340 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C21H20O8V = 1827.53 (11) Å3
Mr = 400.37Z = 4
Monoclinic, C2Mo Kα radiation
a = 27.8221 (12) ŵ = 0.11 mm1
b = 5.1082 (1) ÅT = 200 K
c = 13.0090 (5) Å0.13 × 0.07 × 0.04 mm
β = 98.710 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
2340 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1770 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.996Rint = 0.056
17337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.101Only H-atom displacement parameters refined
S = 1.07Δρmax = 0.17 e Å3
2340 reflectionsΔρmin = 0.25 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.64380 (6)0.9042 (4)0.57076 (14)0.0319 (4)
O120.74938 (6)0.6047 (4)0.73260 (13)0.0329 (5)
O130.69284 (6)0.4286 (4)0.82183 (13)0.0346 (5)
O140.58259 (6)0.4525 (4)0.73050 (13)0.0291 (4)
O160.52502 (6)0.6614 (4)0.60767 (14)0.0339 (5)
O170.69720 (7)0.5838 (4)0.52112 (14)0.0377 (5)
O210.76376 (7)0.2029 (4)0.80564 (14)0.0340 (5)
O220.76541 (7)0.5557 (4)0.91262 (14)0.0333 (5)
C100.74231 (10)0.4493 (6)0.8183 (2)0.0321 (6)
C110.69259 (10)0.8021 (6)0.5832 (2)0.0328 (6)
H110.71580.94210.56860.046 (2)*
C120.70311 (9)0.7217 (6)0.6967 (2)0.0284 (6)
H120.69900.87790.74090.046 (2)*
C130.66896 (9)0.5106 (6)0.72079 (19)0.0288 (6)
H130.66860.36380.66980.046 (2)*
C140.61956 (9)0.6315 (5)0.71191 (18)0.0260 (6)
H140.62020.78560.75950.046 (2)*
C150.60867 (9)0.7212 (6)0.5974 (2)0.0276 (6)
H150.60810.56460.55110.046 (2)*
C160.55935 (9)0.8494 (6)0.5802 (2)0.0342 (7)
H1610.55951.00760.62420.046 (2)*
H1620.55060.90180.50650.046 (2)*
C170.68845 (12)0.6421 (9)0.4118 (2)0.0523 (10)
H1710.71020.78320.39670.046 (2)*
H1720.65460.69730.39190.046 (2)*
H1730.69460.48540.37230.046 (2)*
C210.80707 (10)0.2023 (6)0.8741 (2)0.0291 (6)
C220.80802 (9)0.4151 (6)0.9392 (2)0.0290 (6)
C230.84633 (10)0.4667 (6)1.0154 (2)0.0345 (7)
H230.84650.61151.06130.046 (2)*
C240.88525 (11)0.2911 (7)1.0211 (2)0.0398 (7)
H240.91310.31891.07200.046 (2)*
C250.88453 (10)0.0791 (7)0.9552 (2)0.0390 (7)
H250.91170.03530.96210.046 (2)*
C260.84470 (10)0.0285 (6)0.8783 (2)0.0355 (7)
H260.84390.11640.83230.046 (2)*
C310.53608 (9)0.5784 (6)0.71128 (19)0.0291 (6)
H310.53600.73260.75860.046 (2)*
C320.49829 (9)0.3857 (6)0.7332 (2)0.0293 (6)
C330.50281 (11)0.2628 (7)0.8290 (2)0.0398 (7)
H330.52990.30060.88060.046 (2)*
C340.46786 (11)0.0846 (7)0.8501 (2)0.0455 (8)
H340.47140.00050.91580.046 (2)*
C350.42799 (11)0.0302 (7)0.7761 (2)0.0422 (8)
H350.40390.09020.79090.046 (2)*
C360.42350 (11)0.1516 (7)0.6813 (2)0.0471 (8)
H360.39620.11440.63010.046 (2)*
C370.45846 (11)0.3288 (7)0.6594 (2)0.0405 (7)
H370.45500.41140.59330.046 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0248 (10)0.0316 (10)0.0392 (10)0.0017 (8)0.0047 (8)0.0066 (9)
O120.0215 (9)0.0391 (11)0.0371 (10)0.0003 (9)0.0013 (7)0.0075 (10)
O130.0222 (10)0.0473 (12)0.0329 (10)0.0002 (9)0.0002 (7)0.0123 (9)
O140.0204 (9)0.0324 (10)0.0342 (9)0.0039 (8)0.0033 (7)0.0014 (9)
O160.0233 (10)0.0419 (11)0.0354 (10)0.0035 (9)0.0006 (8)0.0060 (9)
O170.0357 (11)0.0485 (13)0.0297 (9)0.0033 (10)0.0076 (8)0.0004 (10)
O210.0278 (10)0.0324 (10)0.0394 (11)0.0006 (9)0.0028 (8)0.0020 (9)
O220.0273 (10)0.0360 (11)0.0349 (10)0.0041 (9)0.0010 (8)0.0030 (9)
C100.0255 (15)0.0357 (16)0.0339 (14)0.0003 (12)0.0001 (11)0.0034 (13)
C110.0225 (14)0.0365 (15)0.0390 (15)0.0012 (12)0.0028 (12)0.0055 (13)
C120.0202 (13)0.0315 (14)0.0326 (14)0.0009 (11)0.0012 (11)0.0005 (12)
C130.0232 (13)0.0352 (15)0.0275 (13)0.0013 (12)0.0018 (10)0.0017 (12)
C140.0217 (13)0.0284 (14)0.0277 (13)0.0020 (11)0.0030 (10)0.0001 (12)
C150.0245 (13)0.0293 (14)0.0285 (13)0.0035 (12)0.0023 (10)0.0005 (11)
C160.0239 (14)0.0399 (16)0.0377 (15)0.0004 (13)0.0015 (12)0.0081 (13)
C170.0449 (19)0.082 (3)0.0305 (15)0.011 (2)0.0081 (13)0.0072 (18)
C210.0252 (14)0.0315 (14)0.0300 (13)0.0008 (12)0.0019 (11)0.0044 (12)
C220.0231 (14)0.0337 (15)0.0304 (13)0.0014 (12)0.0045 (10)0.0057 (12)
C230.0346 (16)0.0424 (16)0.0254 (13)0.0034 (13)0.0009 (11)0.0017 (13)
C240.0309 (15)0.054 (2)0.0325 (15)0.0007 (15)0.0015 (12)0.0132 (14)
C250.0270 (15)0.0445 (18)0.0447 (16)0.0086 (14)0.0027 (12)0.0160 (15)
C260.0353 (16)0.0321 (15)0.0393 (15)0.0017 (13)0.0063 (12)0.0073 (13)
C310.0217 (13)0.0352 (14)0.0298 (13)0.0016 (12)0.0016 (10)0.0019 (12)
C320.0227 (13)0.0343 (15)0.0316 (14)0.0002 (12)0.0062 (11)0.0047 (12)
C330.0323 (16)0.052 (2)0.0356 (15)0.0069 (14)0.0048 (12)0.0023 (15)
C340.0438 (18)0.054 (2)0.0397 (16)0.0089 (17)0.0107 (14)0.0083 (16)
C350.0325 (16)0.0449 (18)0.0519 (18)0.0090 (15)0.0149 (14)0.0001 (15)
C360.0346 (17)0.056 (2)0.0487 (18)0.0153 (16)0.0012 (14)0.0020 (17)
C370.0329 (16)0.0477 (18)0.0393 (16)0.0100 (14)0.0011 (13)0.0036 (15)
Geometric parameters (Å, º) top
O11—C151.432 (3)C16—H1620.990
O11—C111.440 (3)C17—H1710.980
O12—C101.407 (3)C17—H1720.980
O12—C121.432 (3)C17—H1730.980
O13—C101.388 (3)C21—C261.367 (4)
O13—C131.442 (3)C21—C221.376 (4)
O14—C141.424 (3)C22—C231.367 (4)
O14—C311.433 (3)C23—C241.399 (4)
O16—C311.402 (3)C23—H230.950
O16—C161.437 (3)C24—C251.380 (5)
O17—C111.394 (4)C24—H240.950
O17—C171.437 (3)C25—C261.400 (4)
O21—C211.386 (3)C25—H250.950
O21—C101.413 (4)C26—H260.950
O22—C221.385 (3)C31—C321.499 (4)
O22—C101.405 (3)C31—H311.000
C11—C121.518 (4)C32—C371.382 (4)
C11—H111.000C32—C331.384 (4)
C12—C131.501 (4)C33—C341.390 (4)
C12—H121.000C33—H330.950
C13—C141.495 (4)C34—C351.382 (4)
C13—H131.000C34—H340.950
C14—C151.545 (3)C35—C361.369 (4)
C14—H141.000C35—H350.950
C15—C161.506 (4)C36—C371.389 (4)
C15—H151.000C36—H360.950
C16—H1610.990C37—H370.950
C15—O11—C11113.7 (2)H161—C16—H162108.5
C10—O12—C12105.5 (2)O17—C17—H171109.5
C10—O13—C13105.67 (19)O17—C17—H172109.5
C14—O14—C31109.77 (19)H171—C17—H172109.5
C31—O16—C16112.5 (2)O17—C17—H173109.5
C11—O17—C17113.0 (3)H171—C17—H173109.5
C21—O21—C10105.6 (2)H172—C17—H173109.5
C22—O22—C10106.2 (2)C26—C21—C22123.0 (2)
O13—C10—O22109.0 (2)C26—C21—O21127.8 (3)
O13—C10—O12109.1 (2)C22—C21—O21109.1 (2)
O22—C10—O12111.9 (2)C23—C22—C21122.6 (3)
O13—C10—O21112.0 (2)C23—C22—O22128.7 (3)
O22—C10—O21107.5 (2)C21—C22—O22108.7 (2)
O12—C10—O21107.3 (2)C22—C23—C24115.3 (3)
O17—C11—O11113.1 (2)C22—C23—H23122.4
O17—C11—C12109.0 (2)C24—C23—H23122.4
O11—C11—C12104.3 (2)C25—C24—C23122.1 (3)
O17—C11—H11110.1C25—C24—H24118.9
O11—C11—H11110.1C23—C24—H24118.9
C12—C11—H11110.1C24—C25—C26121.6 (3)
O12—C12—C13101.4 (2)C24—C25—H25119.2
O12—C12—C11117.5 (2)C26—C25—H25119.2
C13—C12—C11111.2 (2)C21—C26—C25115.3 (3)
O12—C12—H12108.8C21—C26—H26122.4
C13—C12—H12108.8C25—C26—H26122.4
C11—C12—H12108.8O16—C31—O14111.4 (2)
O13—C13—C14118.8 (2)O16—C31—C32108.9 (2)
O13—C13—C12100.36 (19)O14—C31—C32108.2 (2)
C14—C13—C12106.9 (2)O16—C31—H31109.4
O13—C13—H13110.1O14—C31—H31109.4
C14—C13—H13110.1C32—C31—H31109.4
C12—C13—H13110.1C37—C32—C33118.9 (3)
O14—C14—C13113.6 (2)C37—C32—C31121.2 (2)
O14—C14—C15108.25 (19)C33—C32—C31119.9 (2)
C13—C14—C15103.9 (2)C32—C33—C34120.3 (3)
O14—C14—H14110.3C32—C33—H33119.9
C13—C14—H14110.3C34—C33—H33119.9
C15—C14—H14110.3C35—C34—C33120.4 (3)
O11—C15—C16108.7 (2)C35—C34—H34119.8
O11—C15—C14112.67 (19)C33—C34—H34119.8
C16—C15—C14108.2 (2)C36—C35—C34119.4 (3)
O11—C15—H15109.1C36—C35—H35120.3
C16—C15—H15109.1C34—C35—H35120.3
C14—C15—H15109.1C35—C36—C37120.6 (3)
O16—C16—C15107.3 (2)C35—C36—H36119.7
O16—C16—H161110.2C37—C36—H36119.7
C15—C16—H161110.2C32—C37—C36120.5 (3)
O16—C16—H162110.2C32—C37—H37119.8
C15—C16—H162110.2C36—C37—H37119.8
C13—O13—C10—O22138.5 (2)C13—C14—C15—O1159.3 (3)
C13—O13—C10—O1216.0 (3)O14—C14—C15—C1659.4 (3)
C13—O13—C10—O21102.6 (2)C13—C14—C15—C16179.5 (2)
C22—O22—C10—O13138.2 (2)C31—O16—C16—C1559.3 (3)
C22—O22—C10—O12101.0 (3)O11—C15—C16—O16179.92 (19)
C22—O22—C10—O2116.6 (3)C14—C15—C16—O1657.3 (3)
C12—O12—C10—O1311.6 (3)C10—O21—C21—C26167.6 (3)
C12—O12—C10—O22109.1 (2)C10—O21—C21—C2210.7 (3)
C12—O12—C10—O21133.1 (2)C26—C21—C22—C231.6 (4)
C21—O21—C10—O13136.5 (2)O21—C21—C22—C23180.0 (2)
C21—O21—C10—O2216.8 (3)C26—C21—C22—O22177.9 (2)
C21—O21—C10—O12103.8 (2)O21—C21—C22—O220.5 (3)
C17—O17—C11—O1165.2 (3)C10—O22—C22—C23169.5 (3)
C17—O17—C11—C12179.3 (2)C10—O22—C22—C2110.1 (3)
C15—O11—C11—O1760.5 (3)C21—C22—C23—C241.5 (4)
C15—O11—C11—C1257.8 (3)O22—C22—C23—C24177.9 (3)
C10—O12—C12—C1333.0 (2)C22—C23—C24—C250.9 (4)
C10—O12—C12—C11154.4 (2)C23—C24—C25—C260.3 (4)
O17—C11—C12—O1257.3 (3)C22—C21—C26—C250.9 (4)
O11—C11—C12—O12178.4 (2)O21—C21—C26—C25179.0 (3)
O17—C11—C12—C1358.9 (3)C24—C25—C26—C210.3 (4)
O11—C11—C12—C1362.2 (3)C16—O16—C31—O1461.3 (3)
C10—O13—C13—C14151.3 (2)C16—O16—C31—C32179.4 (2)
C10—O13—C13—C1235.4 (3)C14—O14—C31—O1661.2 (3)
O12—C12—C13—O1341.6 (2)C14—O14—C31—C32179.14 (18)
C11—C12—C13—O13167.3 (2)O16—C31—C32—C374.4 (4)
O12—C12—C13—C14166.13 (19)O14—C31—C32—C37125.6 (3)
C11—C12—C13—C1468.2 (3)O16—C31—C32—C33176.1 (3)
C31—O14—C14—C13174.84 (19)O14—C31—C32—C3354.9 (3)
C31—O14—C14—C1560.0 (2)C37—C32—C33—C340.3 (4)
O13—C13—C14—O1468.9 (3)C31—C32—C33—C34179.8 (3)
C12—C13—C14—O14178.70 (19)C32—C33—C34—C350.7 (5)
O13—C13—C14—C15173.7 (2)C33—C34—C35—C360.7 (5)
C12—C13—C14—C1561.3 (3)C34—C35—C36—C370.3 (5)
C11—O11—C15—C16179.5 (2)C33—C32—C37—C360.2 (5)
C11—O11—C15—C1460.6 (3)C31—C32—C37—C36179.4 (3)
O14—C14—C15—O11179.6 (2)C35—C36—C37—C320.2 (5)

Experimental details

Crystal data
Chemical formulaC21H20O8
Mr400.37
Crystal system, space groupMonoclinic, C2
Temperature (K)200
a, b, c (Å)27.8221 (12), 5.1082 (1), 13.0090 (5)
β (°) 98.710 (2)
V3)1827.53 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.13 × 0.07 × 0.04
Data collection
DiffractometerNonius Kappa CCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.985, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
17337, 2340, 1770
Rint0.056
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.101, 1.07
No. of reflections2340
No. of parameters264
No. of restraints1
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: COLLECT (Nonius, 2004), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds