Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In bis(2-hydroxy­ethyl­ammonium) oxalate, 2C2H8NO+·C2O42-, hydrogen bonds involving the hydroxy and ammonium groups connect the carboxyl O atoms of the oxalate anion into a three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680001881X/cf6008sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680001881X/cf6008Isup2.hkl
Contains datablock I

html

Hyper-Text Markup Language (HTML) file https://doi.org/10.1107/S160053680001881X/cf6008checkcif.html
checkCIF report

CCDC reference: 155883

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.041
  • wR factor = 0.114
  • Data-to-parameter ratio = 12.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.134 Value of mu given = 0.130 PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(3) - C(3)a = 1.56 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Double salts with small-length alkylammonium cations are of interest because of their optical (Jayasree et al., 1996; Mahadevan Pillai et al., 1997, 1998), ferroelectric, ferroelastic (Kirpichnikova et al., 1990; Vlokh et al., 1991a,b) and structural (Bator et al., 1998; Kearley, 1983) properties, these compounds often exhibiting several phase transitions at lower temperature. The divalent metal 2-ethanolammonium (Jordanovska & Trojko, 1993) and trivalent metal bis- and tris(2-ethanol)ammonium sulfates (Jordanovska et al., 1996) exist as double salts; however, the reaction of MII oxalates (M = Mn, Co, Ni, Cu, Zn and Cd) yields only 2-ethanolamine adducts (Jordanovska & Trojko, 1995).

In our hands, the synthesis of the cadmium oxalate adduct gave only bis(2-ethanolammonium) oxalate. The structures of some ammonium oxalates have been described recently (Krishnakumar et al., 1998; Paixao et al., 1999). The title ammonium oxalate, (I), displays no unusual features; the C—C bond [1.559 (5) Å] in the oxalate anion is also characteristically long. Its ammonium unit is engaged in three hydrogen-bonding interactions, whereas the hydroxyl unit is engaged in one hydrogen-bonding interaction.

Experimental top

An aqueous solution of oxalic acid was neutralized with aqueous ethanolamine to pH 8. The solution was concentrated by evaporating the water. Crystals deposited after cooling the solution to room temperature and these were washed with ethanol and air-dried. A yellow form of the compound was obtained in the attempt to prepare the 2-ethanolamine complex of cadmium(II) oxalate (Jordanovska & Trojko, 1995) by refluxing cadmium oxalate and aqueous 2-ethanolamine in chloroform.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CELDIM in CAD-4 Software (Enraf-Nonius, 1989); data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonding interactions of the anion.
Bis(2-hydroxyethylammonium) oxalate top
Crystal data top
2C2H8NO+·C2O42F(000) = 456
Mr = 212.21Dx = 1.502 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.473 (5) ÅCell parameters from 25 reflections
b = 5.916 (2) Åθ = 6.8–18.1°
c = 10.346 (3) ŵ = 0.13 mm1
β = 118.69 (2)°T = 298 K
V = 938.2 (5) Å3Block, colorless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 2018
ω–2θ scansk = 07
872 measured reflectionsl = 012
822 independent reflections3 standard reflections every 120 min
550 reflections with I > 2σ(I) intensity decay: 7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.712P]
where P = (Fo2 + 2Fc2)/3
822 reflections(Δ/σ)max < 0.001
66 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C2H8NO+·C2O42V = 938.2 (5) Å3
Mr = 212.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.473 (5) ŵ = 0.13 mm1
b = 5.916 (2) ÅT = 298 K
c = 10.346 (3) Å0.20 × 0.10 × 0.05 mm
β = 118.69 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.019
872 measured reflections3 standard reflections every 120 min
822 independent reflections intensity decay: 7%
550 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
822 reflectionsΔρmin = 0.23 e Å3
66 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1537 (1)0.6481 (3)0.0628 (2)0.0338 (5)
O20.0660 (1)0.5873 (3)0.2176 (2)0.0332 (5)
O30.0482 (1)0.2157 (3)0.1781 (2)0.0280 (5)
N10.0888 (1)1.1050 (4)0.0510 (2)0.0271 (5)
C10.1810 (2)1.0305 (5)0.0172 (3)0.0289 (7)
C20.2000 (2)0.8480 (5)0.1294 (3)0.0296 (6)
C30.0330 (2)0.4006 (4)0.2193 (3)0.0215 (6)
H10.12460.61020.10220.051*
H1a0.05390.98730.09330.041*
H1b0.07921.21000.11870.041*
H1c0.07791.16250.01800.041*
H1d0.21891.15870.06420.035*
H1e0.19340.97470.05890.035*
H2a0.26210.81630.18000.036*
H2b0.18390.90000.20190.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.041 (1)0.029 (1)0.038 (1)0.005 (1)0.025 (1)0.002 (1)
O20.044 (1)0.022 (1)0.046 (1)0.006 (1)0.031 (1)0.003 (1)
O30.032 (1)0.023 (1)0.033 (1)0.000 (1)0.019 (1)0.005 (1)
N10.035 (1)0.021 (1)0.029 (1)0.001 (1)0.018 (1)0.000 (1)
C10.032 (2)0.027 (2)0.035 (2)0.005 (1)0.021 (1)0.002 (1)
C20.027 (1)0.033 (2)0.027 (1)0.000 (1)0.012 (1)0.000 (1)
C30.024 (1)0.018 (1)0.020 (1)0.001 (1)0.009 (1)0.000 (1)
Geometric parameters (Å, º) top
O1—C21.412 (3)N1—H1a0.890
O2—C31.250 (3)N1—H1b0.890
O3—C31.248 (3)N1—H1c0.890
N1—C11.481 (3)C1—H1d0.970
C1—C21.501 (4)C1—H1e0.970
C3—C3i1.559 (5)C2—H2a0.970
O1—H10.820C2—H2b0.970
N1—C1—C2111.6 (2)H1b—N1—H1c109.5
O1—C2—C1111.3 (2)N1—C1—H1d109.3
O3—C3—O2126.4 (2)C2—C1—H1d109.3
O3—C3—C3i117.4 (2)N1—C1—H1e109.3
O2—C3—C3i116.2 (2)C2—C1—H1e109.3
C2—O1—H1109.5H1d—C1—H1e108.0
C1—N1—H1a109.5O1—C2—H2a109.4
C1—N1—H1b109.5C1—C2—H2a109.4
H1a—N1—H1b109.5O1—C2—H2b109.4
C1—N1—H1c109.5C1—C2—H2b109.4
H1a—N1—H1c109.5H2a—C2—H2b108.0
N1—C1—C2—O165.8 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.922.720 (3)167
N1—H1a···O3ii0.891.972.835 (3)163
N1—H1b···O2iii0.892.002.878 (3)171
N1—H1c···O3iv0.891.982.857 (3)167
Symmetry codes: (ii) x, y+1, z; (iii) x, y+2, z1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C2H8NO+·C2O42
Mr212.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.473 (5), 5.916 (2), 10.346 (3)
β (°) 118.69 (2)
V3)938.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
872, 822, 550
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.01
No. of reflections822
No. of parameters66
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CELDIM in CAD-4 Software (Enraf-Nonius, 1989), XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C21.412 (3)N1—C11.481 (3)
O2—C31.250 (3)C1—C21.501 (4)
O3—C31.248 (3)C3—C3i1.559 (5)
N1—C1—C2111.6 (2)O3—C3—C3i117.4 (2)
O1—C2—C1111.3 (2)O2—C3—C3i116.2 (2)
O3—C3—O2126.4 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.922.720 (3)167
N1—H1a···O3ii0.891.972.835 (3)163
N1—H1b···O2iii0.892.002.878 (3)171
N1—H1c···O3iv0.891.982.857 (3)167
Symmetry codes: (ii) x, y+1, z; (iii) x, y+2, z1/2; (iv) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds