Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801001076/cf6031sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536801001076/cf6031Isup2.hkl |
CCDC reference: 159759
Key indicators
- Single-crystal X-ray study
- T = 298 K
- Mean (C-C) = 0.001 Å
- R factor = 0.049
- wR factor = 0.064
- Data-to-parameter ratio = 11.9
checkCIF results
No syntax errors found ADDSYM reports no extra symmetry
A 0,06 mole de la quinoxaline-2,3-dione dans 30 ml de diméthyl formamide, on ajoute 0,012 mole du bromure d'allyle, 0,012 mole de K2CO3 et 0,001 mole de bromure de tétra n-butylammonium. Le mélange est laissé sous agitation énergique pendant 24 h. Après filtration de la solution, le solvant est évaporé sous pression réduite, le résidu obtenu est chromatographié sur colonne de silice (éluant: hexane/acétate diéthyle: 95/5). Rendement: 70%; Point de fusion: 438–440 K.
Data collection: KappaCCD Reference Manual (Nonius, 1998); data reduction: DENZO and SCALEPAK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus (Mackay et al., 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus.
Fig. 1. Perspective view of the molecule showing the labelling of the atoms with displacement ellipsoids at the 50% probability level. |
C14H14N2O2 | F(000) = 512 |
Mr = 242.28 | Dx = 1.323 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3000 (5) Å | Cell parameters from 8419 reflections |
b = 15.2215 (5) Å | θ = 1–26.3° |
c = 9.7195 (5) Å | µ = 0.09 mm−1 |
β = 117.883 (2)° | T = 298 K |
V = 1216.20 (10) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.35 × 0.20 mm |
KappaCCD diffractometer | Rint = 0.040 |
Radiation source: fine-focus sealed tube | θmax = 26.3° |
ϕ scan | h = 0→11 |
2459 measured reflections | k = 0→18 |
2352 independent reflections | l = −12→10 |
1939 reflections with I > 3σ(I) |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: geom, diff |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters not refined |
wR(F2) = 0.064 | Weighting scheme based on measured s.u.'s w = 1/(σ2(Fo2) + 0.03Fo2) |
S = 1.17 | (Δ/σ)max = 0.022 |
1939 reflections | Δρmax = 0.17 e Å−3 |
163 parameters | Δρmin = −0.14 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C14H14N2O2 | V = 1216.20 (10) Å3 |
Mr = 242.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.3000 (5) Å | µ = 0.09 mm−1 |
b = 15.2215 (5) Å | T = 298 K |
c = 9.7195 (5) Å | 0.40 × 0.35 × 0.20 mm |
β = 117.883 (2)° |
KappaCCD diffractometer | 1939 reflections with I > 3σ(I) |
2459 measured reflections | Rint = 0.040 |
2352 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 163 parameters |
wR(F2) = 0.064 | H-atom parameters not refined |
S = 1.17 | Δρmax = 0.17 e Å−3 |
1939 reflections | Δρmin = −0.14 e Å−3 |
Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case. |
x | y | z | Uiso*/Ueq | ||
O14 | 0.85696 (5) | −0.04852 (2) | 0.32547 (5) | 0.0824 (2) | |
O15 | 1.07376 (5) | 0.02847 (2) | 0.25103 (5) | 0.0850 (2) | |
N1 | 0.76808 (4) | 0.08507 (2) | 0.35808 (4) | 0.04602 (19) | |
N4 | 0.98845 (4) | 0.16385 (2) | 0.27648 (4) | 0.04288 (18) | |
C2 | 0.86428 (6) | 0.03162 (3) | 0.32342 (6) | 0.0529 (2) | |
C3 | 0.98396 (5) | 0.07448 (3) | 0.28060 (5) | 0.0524 (2) | |
C5 | 0.88959 (4) | 0.21695 (3) | 0.31653 (4) | 0.0359 (2) | |
C6 | 0.90080 (5) | 0.30850 (3) | 0.31747 (5) | 0.0438 (2) | |
C7 | 0.80387 (5) | 0.35919 (3) | 0.35761 (5) | 0.0497 (2) | |
C8 | 0.69490 (5) | 0.31999 (3) | 0.39716 (6) | 0.0514 (2) | |
C9 | 0.68261 (5) | 0.23001 (3) | 0.39763 (5) | 0.0459 (2) | |
C10 | 0.77982 (4) | 0.17733 (3) | 0.35785 (5) | 0.0372 (2) | |
C11 | 0.65263 (6) | 0.04392 (3) | 0.40239 (6) | 0.0624 (3) | |
C12 | 0.48081 (6) | 0.04530 (3) | 0.27624 (7) | 0.0668 (3) | |
C13 | 0.42997 (6) | 0.06273 (4) | 0.13123 (7) | 0.0715 (3) | |
C16 | 1.10207 (5) | 0.20509 (3) | 0.22986 (5) | 0.0543 (3) | |
C17 | 1.25717 (5) | 0.23463 (4) | 0.36380 (6) | 0.0620 (3) | |
C18 | 1.31233 (6) | 0.21249 (3) | 0.50775 (6) | 0.0621 (3) | |
H6 | 0.97694 | 0.33594 | 0.29022 | 0.05937* | |
H7 | 0.81264 | 0.42204 | 0.35828 | 0.06433* | |
H8 | 0.62649 | 0.35561 | 0.42395 | 0.06700* | |
H9 | 0.60694 | 0.20318 | 0.42618 | 0.06244* | |
H12 | 0.39397 | 0.03243 | 0.30029 | 0.08121* | |
H17 | 1.32656 | 0.27431 | 0.34538 | 0.07745* | |
H11A | 0.66065 | 0.07496 | 0.49169 | 0.07699* | |
H11B | 0.68690 | −0.01580 | 0.43054 | 0.07699* | |
H13A | 0.30453 | 0.06287 | 0.04686 | 0.08460* | |
H13B | 0.50738 | 0.08273 | 0.08585 | 0.08460* | |
H16A | 1.04617 | 0.25431 | 0.16512 | 0.07106* | |
H16B | 1.12485 | 0.16255 | 0.16970 | 0.07106* | |
H18A | 1.41401 | 0.23478 | 0.58701 | 0.07572* | |
H18B | 1.24931 | 0.17290 | 0.53498 | 0.07572* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O14 | 0.0844 (3) | 0.0340 (2) | 0.1007 (3) | 0.00440 (17) | 0.0398 (2) | −0.00202 (19) |
O15 | 0.0732 (2) | 0.0648 (2) | 0.0980 (3) | 0.02095 (19) | 0.0480 (2) | −0.0114 (2) |
N1 | 0.0412 (2) | 0.0330 (2) | 0.0504 (2) | −0.00009 (15) | 0.02017 (18) | 0.00457 (17) |
N4 | 0.03480 (19) | 0.0449 (2) | 0.0391 (2) | 0.00347 (15) | 0.01812 (16) | −0.00089 (17) |
C2 | 0.0495 (3) | 0.0359 (3) | 0.0544 (3) | 0.0048 (2) | 0.0169 (2) | −0.0004 (2) |
C3 | 0.0438 (3) | 0.0483 (3) | 0.0485 (3) | 0.0111 (2) | 0.0156 (2) | −0.0053 (2) |
C5 | 0.02982 (19) | 0.0360 (2) | 0.0321 (2) | 0.00357 (17) | 0.01241 (17) | 0.00178 (18) |
C6 | 0.0378 (2) | 0.0385 (2) | 0.0428 (2) | −0.00016 (18) | 0.0175 (2) | 0.00514 (19) |
C7 | 0.0460 (2) | 0.0328 (2) | 0.0543 (3) | 0.00359 (19) | 0.0202 (2) | 0.0036 (2) |
C8 | 0.0432 (2) | 0.0422 (3) | 0.0557 (3) | 0.0066 (2) | 0.0240 (2) | −0.0028 (2) |
C9 | 0.0361 (2) | 0.0436 (3) | 0.0480 (3) | −0.00037 (19) | 0.0225 (2) | 0.0006 (2) |
C10 | 0.0329 (2) | 0.0313 (2) | 0.0357 (2) | 0.00095 (16) | 0.01253 (18) | 0.00276 (18) |
C11 | 0.0643 (3) | 0.0409 (3) | 0.0661 (3) | −0.0065 (2) | 0.0344 (3) | 0.0107 (2) |
C12 | 0.0567 (3) | 0.0499 (3) | 0.0783 (4) | −0.0185 (2) | 0.0375 (3) | −0.0059 (3) |
C13 | 0.0572 (3) | 0.0640 (4) | 0.0724 (4) | −0.0123 (3) | 0.0257 (3) | −0.0011 (3) |
C16 | 0.0399 (2) | 0.0699 (3) | 0.0438 (3) | 0.0043 (2) | 0.0236 (2) | 0.0030 (2) |
C17 | 0.0385 (3) | 0.0781 (4) | 0.0566 (3) | −0.0035 (2) | 0.0233 (2) | 0.0047 (3) |
C18 | 0.0496 (3) | 0.0644 (3) | 0.0526 (3) | −0.0010 (2) | 0.0149 (2) | −0.0017 (3) |
O14—C2 | 1.2225 (5) | C5—C10 | 1.3967 (5) |
O15—C3 | 1.2228 (5) | C6—C7 | 1.3744 (6) |
N1—C2 | 1.3630 (6) | C7—C8 | 1.3767 (6) |
N1—C10 | 1.4088 (5) | C8—C9 | 1.3746 (6) |
N1—C11 | 1.4706 (5) | C9—C10 | 1.3916 (5) |
N4—C3 | 1.3621 (6) | C11—C12 | 1.4915 (7) |
N4—C5 | 1.4089 (5) | C12—C13 | 1.2873 (7) |
N4—C16 | 1.4710 (5) | C16—C17 | 1.4903 (6) |
C2—C3 | 1.5069 (7) | C17—C18 | 1.2895 (7) |
C5—C6 | 1.3972 (5) | ||
C2—N1—C10 | 122.30 (4) | N4—C5—C10 | 119.40 (4) |
C2—N1—C11 | 118.14 (4) | C6—C5—C10 | 119.41 (4) |
C10—N1—C11 | 119.52 (4) | C5—C6—C7 | 120.33 (4) |
C3—N4—C5 | 122.14 (4) | C6—C7—C8 | 120.13 (4) |
C3—N4—C16 | 118.14 (4) | C7—C8—C9 | 120.41 (4) |
C5—N4—C16 | 119.72 (4) | C8—C9—C10 | 120.49 (4) |
O14—C2—N1 | 122.93 (5) | N1—C10—C5 | 119.90 (3) |
O14—C2—C3 | 119.37 (4) | N1—C10—C9 | 120.87 (4) |
N1—C2—C3 | 117.69 (4) | C5—C10—C9 | 119.23 (4) |
O15—C3—N4 | 122.10 (5) | N1—C11—C12 | 113.68 (4) |
O15—C3—C2 | 119.39 (5) | C11—C12—C13 | 127.34 (5) |
N4—C3—C2 | 118.51 (4) | N4—C16—C17 | 113.64 (4) |
N4—C5—C6 | 121.18 (4) | C16—C17—C18 | 126.89 (5) |
Experimental details
Crystal data | |
Chemical formula | C14H14N2O2 |
Mr | 242.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.3000 (5), 15.2215 (5), 9.7195 (5) |
β (°) | 117.883 (2) |
V (Å3) | 1216.20 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.40 × 0.35 × 0.20 |
Data collection | |
Diffractometer | KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 3σ(I)] reflections | 2459, 2352, 1939 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.623 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.064, 1.17 |
No. of reflections | 1939 |
No. of parameters | 163 |
No. of restraints | ? |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.17, −0.14 |
Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPAK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), maXus (Mackay et al., 1999), ORTEPII (Johnson, 1976), maXus.
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
La chimie des quinoxalines a connu une attention particulière ces dernières décennies, inhérente à la mize en évidence des différentes applications, de plusieurs dérivés quinoxaliniques dans divers domaines. En effet, ils sont utilisés comme colorants pour la détection des métaux, stabilisateurs d'huile (Campaigne & Mclaughlin, 1983), et ils sont commercialisés comme antibiotiques (Ungermach, 1996), antiparasitaires (Ikeda et al., 1992; Romer et al., 1995; Sutherland et al., 1996) et anticonvulsiants (Loscher et al., 1999). Il nous a paru intéressant de poursuivre nos recherches dans ce domaine, en examinant la synthèse de nouveaux dérivés de la quinoxaline susceptibles de présenter des propriétés biologiques et pharmacologiques intéressantes. La méthode de synthèse que nous avons adoptée met en jeu l'action du chlorure d'allyle en excès sur la quinoxaline-2,3-dione dans le diméthyl formamide, en présence de deux équivalents de carbonate de potassium et de bromure de tétra n-butylammonium comme catalyseur. L'identification de (I) a été réalisée sur la base des données spectrales RMN 1H, 13C, masse et par diffraction X. Les douze atomes du groupement quinoxaline-2,3-dione forment un plan (d.c.m.: 0.0186 Å) et les deux bras allyliques, situés de part et d'autre de ce plan, sont presque perpendiculaires au plan quinoxaline: N1/C11/C12/C13 (d.c.m.: 0.0455 Å) est à 83.4 (4)° et N4/C16/C17/C18 (d.c.m.: 0.0498 Å) à 92.6 (4)°.