Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, 3,4,5-tri­hydroxy­benzoic acid monohydrate, C7H6O5·H2O, the gallic acid mol­ecule is essentially planar and has two intramolecular hydrogen bonds between hydroxyl groups. The H atoms of the three hydroxyl groups are oriented in the same direction around the ring, and form intra- and intermolecular hydrogen bonds. The crystal structure is stabilized by all available intermolecular hydrogen bonds, including also those involving the water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012041/cf6081sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012041/cf6081Isup2.hkl
Contains datablock I

CCDC reference: 170921

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.049
  • wR factor = 0.188
  • Data-to-parameter ratio = 15.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Gallic acid, 3,4,5-trihydroxybenzoic acid, is a naturally occurring plant phenol which has antitumor and anti-oxidative activity. It induces apotosis in the human myelogenenous leukemic cell line (Sakaguchi et al., 1999; Satoh & Sakagami, 1997). Therefore the determination of its crystal structure is important for the structural clarification of its biological function. For this reason, we intended to analyse its crystal structure. Recently, this was determined in a monohydrate form by Jiang et al. (2000). We have mow determined its structure as a different monohydrated form, (I).

The molecular structure of (I) is essentially planar as shown in Fig. 1. In the molecule, all the H atoms of the three hydroxyl groups are oriented in the same direction around the ring, forming two intramolecular hydrogen bonds between a pair of hydroxyl groups at positions 3 and 4, and at positions 4 and 5. The hydroxyl groups at positions 3 and 4 are also linked to the water-O atom and to the hydroxyl-O atom of a neighbouring molecule by a bifurcated hydrogen bond. This hydrogen-bonding scheme is different from that reported by Jiant et al. (2000), in which only one intramolecular hydrogen bond is present, and one of the three H atoms of the hydroxyl groups is oriented in the reverse direction to the others. Furthermore, a hydrogen bond is formed between the carboxyl groups in the previous structure, but this interaction is not present in the structure reported here. All of the possible hydrogen bonds are present as either intra- or intermolecular interactions, as shown in Table 2. The two different crystal structures and hydrogen-bonding schemes observed for gallic acid monohydrate may have a role in the biological function of this compound.

Experimental top

The crystal was obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were located from difference Fourier maps and were not refined.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: SIR88 (Burla et al., 1989) and DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids for non-H atoms correspond to 50% probability.
(I) top
Crystal data top
C7H6O5·H2OF(000) = 392.0
Mr = 188.13Dx = 1.636 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.7107 Å
a = 14.15 (1) ÅCell parameters from 18 reflections
b = 3.622 (9) Åθ = 10.0–14.3°
c = 15.028 (10) ŵ = 0.15 mm1
β = 97.52 (7)°T = 296 K
V = 764 (1) Å3Needle, colorless
Z = 40.50 × 0.10 × 0.03 mm
Data collection top
Rigaku AFC-5R
diffractometer
θmax = 27.5°, θmin = 4°
ω–2θ scansh = 018
2109 measured reflectionsk = 40
1766 independent reflectionsl = 1919
764 reflections with I > 2σ(I)3 standard reflections every 150 reflections
Rint = 0.040 intensity decay: 0.1%
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.188(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.31 e Å3
1766 reflectionsΔρmin = 0.31 e Å3
118 parameters
Crystal data top
C7H6O5·H2OV = 764 (1) Å3
Mr = 188.13Z = 4
Monoclinic, P2/nMo Kα radiation
a = 14.15 (1) ŵ = 0.15 mm1
b = 3.622 (9) ÅT = 296 K
c = 15.028 (10) Å0.50 × 0.10 × 0.03 mm
β = 97.52 (7)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.040
2109 measured reflections3 standard reflections every 150 reflections
1766 independent reflections intensity decay: 0.1%
764 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.049118 parameters
wR(F2) = 0.188H-atom parameters not refined
S = 0.91Δρmax = 0.31 e Å3
1766 reflectionsΔρmin = 0.31 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3779 (2)0.2043 (9)0.7302 (2)0.0449 (8)
O20.4899 (2)0.4049 (9)0.6523 (2)0.0447 (9)
O30.1018 (2)0.1394 (8)0.5049 (2)0.0338 (7)
O40.1550 (2)0.0075 (8)0.3430 (2)0.0334 (7)
O50.3351 (2)0.2679 (8)0.3286 (2)0.0336 (7)
O60.5102 (2)0.4879 (8)0.1313 (2)0.0370 (7)
C10.3455 (2)0.175 (1)0.5732 (2)0.0243 (8)
C20.2535 (2)0.044 (1)0.5784 (2)0.0253 (8)
C30.1931 (2)0.0162 (10)0.5004 (2)0.0230 (8)
C40.2207 (2)0.0606 (10)0.4172 (2)0.0228 (8)
C50.3126 (2)0.191 (1)0.4124 (2)0.0248 (8)
C60.3740 (2)0.243 (1)0.4905 (2)0.0264 (8)
C70.4124 (3)0.272 (1)0.6544 (2)0.0280 (9)
H10.41260.28580.77480.0464*
H20.22920.01050.63470.0464*
H30.07770.24360.45650.0464*
H40.18080.07100.29010.0464*
H50.38930.37300.33310.0473*
H60.43460.33060.48470.0464*
H70.46730.36750.14930.0556*
H80.53470.36360.09580.0556*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.043 (2)0.070 (2)0.021 (1)0.018 (2)0.000 (1)0.006 (2)
O20.028 (1)0.069 (2)0.036 (2)0.022 (2)0.000 (1)0.002 (2)
O30.022 (1)0.048 (2)0.031 (1)0.012 (1)0.002 (1)0.000 (1)
O40.026 (1)0.052 (2)0.022 (1)0.010 (1)0.0018 (10)0.003 (1)
O50.028 (1)0.050 (2)0.024 (1)0.008 (1)0.005 (1)0.002 (1)
O60.032 (1)0.052 (2)0.027 (1)0.000 (1)0.004 (1)0.009 (1)
C10.025 (2)0.025 (2)0.022 (2)0.002 (2)0.002 (1)0.001 (2)
C20.026 (2)0.025 (2)0.026 (2)0.001 (2)0.008 (1)0.002 (2)
C30.020 (2)0.023 (2)0.027 (2)0.004 (2)0.003 (1)0.001 (2)
C40.022 (2)0.023 (2)0.022 (2)0.003 (2)0.001 (1)0.000 (2)
C50.025 (2)0.026 (2)0.025 (2)0.001 (2)0.007 (1)0.001 (2)
C60.017 (2)0.032 (2)0.030 (2)0.008 (2)0.002 (1)0.002 (2)
C70.027 (2)0.031 (2)0.025 (2)0.003 (2)0.001 (1)0.001 (2)
Geometric parameters (Å, º) top
O1—C71.317 (5)O6—H80.812
O1—H10.830C1—C21.396 (5)
O2—C71.203 (5)C1—C61.380 (5)
O3—C31.373 (4)C1—C71.487 (5)
O3—H30.850C2—C31.376 (4)
O4—C41.370 (4)C2—H20.975
O4—H40.945C3—C41.391 (5)
O5—C51.372 (4)C4—C51.390 (5)
O5—H50.851C5—C61.377 (4)
O6—H70.820C6—H60.929
O1···O6i2.686 (4)O3···O6v2.769 (4)
O1···O2ii3.576 (5)O3···O3vi3.039 (5)
O2···O5i2.718 (4)O3···C3ii3.432 (5)
O2···O6i3.275 (9)O4···O5vii2.772 (4)
O2···C6i3.321 (5)O4···O6vii2.977 (4)
O2···C7iii3.325 (5)O5···C5iii3.602 (10)
O2···C5i3.410 (5)O6···O3viii2.747 (4)
O2···C1iii3.569 (5)O6···O4vii2.977 (4)
O3···O6iv2.747 (4)
C7—O1—H1112.7C2—C3—C4121.0 (3)
C3—O3—H3112.3O4—C4—C3117.4 (3)
C4—O4—H4110.6O4—C4—C5123.2 (3)
C5—O5—H5109.5C3—C4—C5119.3 (3)
H7—O6—H8108.7O5—C5—C4116.8 (3)
C2—C1—C6119.7 (3)O5—C5—C6124.0 (3)
C2—C1—C7122.2 (3)C4—C5—C6119.6 (3)
C6—C1—C7118.0 (3)C1—C6—C5121.0 (3)
C1—C2—C3119.3 (3)C1—C6—H6121.8
C1—C2—H2123.7C5—C6—H6117.2
C3—C2—H2117.0O1—C7—O2122.6 (3)
O3—C3—C2119.8 (3)O1—C7—C1113.5 (3)
O3—C3—C4119.2 (3)O2—C7—C1123.8 (3)
O1—C7—C1—C22.7 (5)O5—C5—C4—C3178.9 (3)
O1—C7—C1—C6178.6 (3)O5—C5—C6—C1177.2 (3)
O2—C7—C1—C2175.3 (4)C1—C2—C3—C41.9 (6)
O2—C7—C1—C60.2 (6)C1—C6—C5—C41.5 (6)
O3—C3—C2—C1179.0 (3)C2—C1—C6—C51.4 (6)
O3—C3—C4—O40.2 (5)C2—C3—C4—C51.8 (6)
O3—C3—C4—C5179.0 (3)C3—C2—C1—C60.3 (6)
O4—C4—C3—C2177.3 (3)C3—C2—C1—C7175.7 (4)
O4—C4—C5—O50.9 (5)C3—C4—C5—C60.1 (6)
O4—C4—C5—C6178.9 (4)C5—C6—C1—C7174.2 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x1/2, y, z+1/2; (v) x+1/2, y1, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.8502.3282.692 (8)106.3
O4—H4···O50.9452.3062.752 (8)108.9
O3—H3···O6v0.8501.9492.770 (4)161.6
O4—H4···O5vii0.9451.9072.767 (8)150.0
O5—H5···O2i0.8511.8782.729 (4)177.7
O6—H7···O4vii0.8202.1822.977 (4)163.8
O6—H8···O3viii0.8121.9412.747 (4)170.9
O1—H1···O6i0.8301.8592.686 (4)174.2
Symmetry codes: (i) x+1, y+1, z+1; (v) x+1/2, y1, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC7H6O5·H2O
Mr188.13
Crystal system, space groupMonoclinic, P2/n
Temperature (K)296
a, b, c (Å)14.15 (1), 3.622 (9), 15.028 (10)
β (°) 97.52 (7)
V3)764 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.50 × 0.10 × 0.03
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2109, 1766, 764
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.188, 0.91
No. of reflections1766
No. of parameters118
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1999), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999), SIR88 (Burla et al., 1989) and DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) top
O1—C71.317 (5)C1—C61.380 (5)
O2—C71.203 (5)C1—C71.487 (5)
O3—C31.373 (4)C2—C31.376 (4)
O4—C41.370 (4)C3—C41.391 (5)
O5—C51.372 (4)C4—C51.390 (5)
C1—C21.396 (5)C5—C61.377 (4)
C2—C1—C6119.7 (3)C3—C4—C5119.3 (3)
C2—C1—C7122.2 (3)O5—C5—C4116.8 (3)
C6—C1—C7118.0 (3)O5—C5—C6124.0 (3)
C1—C2—C3119.3 (3)C4—C5—C6119.6 (3)
O3—C3—C2119.8 (3)C1—C6—C5121.0 (3)
O3—C3—C4119.2 (3)O1—C7—O2122.6 (3)
C2—C3—C4121.0 (3)O1—C7—C1113.5 (3)
O4—C4—C3117.4 (3)O2—C7—C1123.8 (3)
O4—C4—C5123.2 (3)
O1—C7—C1—C22.7 (5)O5—C5—C4—C3178.9 (3)
O1—C7—C1—C6178.6 (3)O5—C5—C6—C1177.2 (3)
O2—C7—C1—C2175.3 (4)C1—C2—C3—C41.9 (6)
O2—C7—C1—C60.2 (6)C1—C6—C5—C41.5 (6)
O3—C3—C2—C1179.0 (3)C2—C1—C6—C51.4 (6)
O3—C3—C4—O40.2 (5)C2—C3—C4—C51.8 (6)
O3—C3—C4—C5179.0 (3)C3—C2—C1—C60.3 (6)
O4—C4—C3—C2177.3 (3)C3—C2—C1—C7175.7 (4)
O4—C4—C5—O50.9 (5)C3—C4—C5—C60.1 (6)
O4—C4—C5—C6178.9 (4)C5—C6—C1—C7174.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.8502.3282.692 (8)106.3
O4—H4···O50.9452.3062.752 (8)108.9
O3—H3···O6i0.8501.9492.770 (4)161.6
O4—H4···O5ii0.9451.9072.767 (8)150.0
O5—H5···O2iii0.8511.8782.729 (4)177.7
O6—H7···O4ii0.8202.1822.977 (4)163.8
O6—H8···O3iv0.8121.9412.747 (4)170.9
O1—H1···O6iii0.8301.8592.686 (4)174.2
Symmetry codes: (i) x+1/2, y1, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds