Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C16H28N6O2, has a centre of symmetry. There are two planar 1,2,4-triazole rings, connected by an octane group. The crystal structure is stabilized by C—H...N, C—H...O and N—H...O intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803016726/cf6276sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803016726/cf6276Isup2.hkl
Contains datablock I

CCDC reference: 222854

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.046
  • wR factor = 0.136
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ..... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Schiff bases of 4-amino-1,2,4-triazole have received considerable attention over the past few decades (Kitaev et al., 1971; Mazza et al., 1976; Kargin et al., 1988). It is of interest that some of them are anti-inflammatory agents (Gupta & Bhargava, 1978) and new concidiostatic drugs (Colauti et al., 1971). Some other diverse pharmacological properties of 1,2,4-triazoles are analgesic, antiasthmatic, diuretic, fungicidal, bactericidal and pesticidal activities (Bennur et al., 1976; Webb & Parsons, 1977; Heubach et al., 1980; Mohammed et al., 1993). Therefore, the structures of 1,2,4-triazole derivatives with different substituents have been the subject of much interest in our laboratory. Examples include 1-acetyl-3-(p-chlorobenzyl)-4-benzylidenamino-4,5-dihydro-1H- 1,2,4-triazol-5-one, (II) (Çoruh, 2002), 1-acetyl-4-(p-chlorobenzylidenamino)-3-acetyl-4,5-dihydro-1H- 1,2,4-triazol-5-one, (III) (Çoruh, Kahveci, Şaşmaz, A~gar & Kim, 2003), 1-acetyl-3-(p-chlorobenzyl)-4-(p-chlorobenzylidenamino)-4,5-dihydro-1H- 1,2,4-triazol-5-one, (IV) (Ocak et al., 2003), and C—H···O and C—H···π interactions in 1-acetyl-4-(p-chlorobenzylidenamino)-3-ethyl-4,5-dihydro-1H-1,2,4-triazol-5-one, (V) (Çoruh, Kahveci, Şaşmaz, A~gar, Kim & Erdönmez, 2003).

The molecular structure of (I) is shown in Fig.1. The compound consists of two 1,2,4-triazole rings, each with an ethyl group on the C atom in the 3-position and an oxo O atom on the C atom at the 5-position, and linked by an octane chain attached to their N atoms at the 4-position. The molecule has a centre of symmetry in the middle of this connecting chain.

In the molecule, the placement of the ethyl group and the oxo O atom are very similar to a previously reported example (Çoruh, Kahveci, Şaşmaz, A~gar & Kim, 2003). Because of a C—H···N hydrogen bond involving N1 as acceptor (Table 2), the N3C1 bond length, 1.288 (3) Å, is a little longer than some values reported in the literature [1.272 (3) Å in C13H13ClN4O2 (,Coruh, Kahveci, Şaşmaz, A~gar, Kim & Erdönmez, 2003), 1.261 (4) Å in the 4-amino-3-methyl-1,2,4-triazole-5-thione derivative of p-nitrophenylaldehyde (Liu et al., 1999), and 1.267 (2) Å in 4-(4-hydroxybenzylidenamino)-4H-1,2,4-triazole hemihydrate (Zhu et al., 2000)]. However, it is close to other reported values (Puviarasan et al., 1999; Çoruh, Kahveci, Şaşmaz, A~gar & Kim, 2003; Ocak et al., 2003). In the 1,2,4-triazole ring, atoms N1 and N2 have no substitutents, and the N1—N2 bond length, 1.372 (2) Å, is essentially identical to 1.373 (2) Å reported for a similar compound (Liu et al., 1999). This is shorter than in compounds where at least one N atom has a substituent [1.394 (3) Å (Çoruh, Kahveci, Şaşmaz, A~gar, Kim & Erdönmez, 2003), 1.399 (2) Å (Çoruh, Kahveci, Şaşmaz, A~gar & Kim, 2003) and 1.404 (4) Å (Ocak et al., 2003)]. In (I), the 1,2,4-triazole ring is planar, with a maximum deviation from the least-squares plane of 0.0017 (1) Å for atom N1. Atom O1 is also in the plane, with a deviation of only 0.0006 (1) Å.

In addition to van der Waals interactions, the molecular structure and crystal packing of (I) are stabilized by C—H···O, C—H···N and N—H···O intermolecular interactions (Fig. 2 and Table 2).

Experimental top

1,8-Diaminooctane (1,44 g, 0.001 mol) was dissolved in water (100 ml) and ethyl propionate ethoxycarbonylhydrazone (3.76 g, 0.02 mol) was added. The reaction mixture was refluxed for 6 h and then cooled to room temperature. The precipitate was filtered off and washed with cold water. After drying in vacuo, the solid product was recrystallized from ethanol-water (1:2) to afford the desired compound, (I) (yield 2.82 g, 84%). M.p. 452–453 K. IR (KBr, cm−1): ν(N—H) 3165, 3063; ν(CO) 1680 and ν(CN) 1560. 1H NMR (p.p.m. in DMSO-d6): 0.54, 1.86 (m, 18H, 6CH2, 2CH3); 2.54 (q, 4H, 2CH2); 3.44 (t, 2 N-CH2, 4H); 11.26 (s, 2NH, 2H).

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with ethyl C—H = 0.97 Å, methyl C—H = 0.96 Å, and N—H = 0.86 Å; Uiso(H) was set to 1.2Ueq of the parent atom in each case.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The strong hydrogen-bond network observed in (I), viwed along the a axis.
(I) top
Crystal data top
C16H28N6O2F(000) = 364
Mr = 336.44Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7852 (10) ÅCell parameters from 25 reflections
b = 7.829 (2) Åθ = 8.0–12.8°
c = 17.550 (3) ŵ = 0.08 mm1
β = 95.894 (10)°T = 293 K
V = 927.4 (3) Å3Block, colorless
Z = 20.45 × 0.35 × 0.3 mm
Data collection top
Enraf-Nonius CAD-4 MACH3
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.3°
Graphite monochromatorh = 08
2θ/ω scansk = 09
1975 measured reflectionsl = 2121
1817 independent reflections3 standard reflections every 60 min
1162 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.0879P]
where P = (Fo2 + 2Fc2)/3
1817 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H28N6O2V = 927.4 (3) Å3
Mr = 336.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.7852 (10) ŵ = 0.08 mm1
b = 7.829 (2) ÅT = 293 K
c = 17.550 (3) Å0.45 × 0.35 × 0.3 mm
β = 95.894 (10)°
Data collection top
Enraf-Nonius CAD-4 MACH3
diffractometer
Rint = 0.023
1975 measured reflections3 standard reflections every 60 min
1817 independent reflections intensity decay: none
1162 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
1817 reflectionsΔρmin = 0.22 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0289 (2)0.84498 (19)0.25180 (9)0.0811 (5)
C10.7656 (4)1.0832 (4)0.42183 (19)0.1061 (10)
H1A0.76041.16790.38210.127*
H1B0.90141.05720.43870.127*
H1C0.70131.12610.46420.127*
C20.6635 (3)0.9264 (3)0.39173 (15)0.0829 (7)
H2A0.65500.84690.43370.100*
H2B0.74220.87310.35520.100*
C30.4614 (3)0.9583 (2)0.35393 (11)0.0538 (5)
N10.3803 (2)1.10689 (19)0.34601 (10)0.0630 (5)
N20.2013 (2)1.07601 (19)0.30454 (10)0.0605 (5)
H20.11641.15460.29090.073*
C40.1730 (3)0.9116 (2)0.28774 (11)0.0539 (5)
N30.3423 (2)0.83473 (17)0.31990 (9)0.0502 (4)
C50.3778 (3)0.6505 (2)0.31894 (12)0.0630 (5)
H5A0.51360.63010.30870.076*
H5B0.29160.59980.27750.076*
C60.3422 (3)0.5636 (2)0.39307 (12)0.0620 (5)
H6A0.37150.44290.38880.074*
H6B0.43380.61020.43390.074*
C70.1346 (3)0.5825 (2)0.41489 (11)0.0600 (5)
H7A0.04210.54040.37330.072*
H7B0.10700.70280.42180.072*
C80.1017 (3)0.4874 (2)0.48744 (12)0.0637 (6)
H8A0.12250.36640.47940.076*
H8B0.19940.52490.52820.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0786 (10)0.0590 (9)0.0969 (11)0.0137 (7)0.0332 (8)0.0029 (8)
C10.0759 (17)0.114 (2)0.119 (2)0.0185 (15)0.0318 (15)0.0050 (18)
C20.0605 (13)0.0756 (15)0.1065 (19)0.0005 (11)0.0212 (12)0.0103 (13)
C30.0523 (10)0.0462 (10)0.0612 (11)0.0002 (8)0.0030 (9)0.0027 (8)
N10.0578 (10)0.0460 (9)0.0810 (12)0.0022 (7)0.0138 (8)0.0008 (8)
N20.0521 (9)0.0418 (8)0.0836 (12)0.0025 (7)0.0119 (8)0.0045 (7)
C40.0555 (11)0.0449 (10)0.0586 (11)0.0040 (8)0.0073 (9)0.0057 (8)
N30.0571 (9)0.0383 (8)0.0540 (9)0.0013 (6)0.0005 (7)0.0014 (6)
C50.0772 (13)0.0420 (10)0.0693 (13)0.0083 (10)0.0048 (10)0.0038 (9)
C60.0715 (13)0.0399 (10)0.0727 (13)0.0058 (9)0.0014 (10)0.0072 (9)
C70.0674 (13)0.0481 (11)0.0613 (12)0.0014 (9)0.0094 (9)0.0085 (9)
C80.0662 (11)0.0515 (11)0.0700 (13)0.0027 (9)0.0096 (10)0.0128 (10)
Geometric parameters (Å, º) top
O1—C41.224 (2)N3—C51.463 (2)
C1—C21.480 (3)C5—C61.509 (3)
C1—H1A0.960C5—H5A0.970
C1—H1B0.960C5—H5B0.970
C1—H1C0.960C6—C71.505 (3)
C2—C31.482 (3)C6—H6A0.970
C2—H2A0.970C6—H6B0.970
C2—H2B0.970C7—C81.512 (3)
C3—N11.288 (2)C7—H7A0.970
C3—N31.359 (2)C7—H7B0.970
N1—N21.372 (2)C8—C8i1.504 (4)
N2—C41.330 (2)C8—H8A0.970
N2—H20.860C8—H8B0.970
C4—N31.367 (2)
C2—C1—H1A109.5N3—C5—C6113.17 (17)
C2—C1—H1B109.5N3—C5—H5A108.9
H1A—C1—H1B109.5C6—C5—H5A108.9
C2—C1—H1C109.5N3—C5—H5B108.9
H1A—C1—H1C109.5C6—C5—H5B108.9
H1B—C1—H1C109.5H5A—C5—H5B107.8
C1—C2—C3113.4 (2)C7—C6—C5114.30 (16)
C1—C2—H2A108.9C7—C6—H6A108.7
C3—C2—H2A108.9C5—C6—H6A108.7
C1—C2—H2B108.9C7—C6—H6B108.7
C3—C2—H2B108.9C5—C6—H6B108.7
H2A—C2—H2B107.7H6A—C6—H6B107.6
N1—C3—N3111.56 (15)C6—C7—C8112.91 (15)
N1—C3—C2124.48 (17)C6—C7—H7A109.0
N3—C3—C2123.88 (17)C8—C7—H7A109.0
C3—N1—N2104.08 (14)C6—C7—H7B109.0
C4—N2—N1112.83 (14)C8—C7—H7B109.0
C4—N2—H2123.6H7A—C7—H7B107.8
N1—N2—H2123.6C8i—C8—C7113.70 (19)
O1—C4—N2128.01 (18)C8i—C8—H8A108.8
O1—C4—N3128.20 (18)C7—C8—H8A108.8
N2—C4—N3103.79 (15)C8i—C8—H8B108.8
C3—N3—C4107.73 (14)C7—C8—H8B108.8
C3—N3—C5128.06 (16)H8A—C8—H8B107.7
C4—N3—C5124.16 (16)
C1—C2—C3—N11.2 (4)C2—C3—N3—C55.7 (3)
C1—C2—C3—N3177.8 (2)O1—C4—N3—C3179.9 (2)
N3—C3—N1—N20.3 (2)N2—C4—N3—C30.0 (2)
C2—C3—N1—N2176.6 (2)O1—C4—N3—C52.4 (3)
C3—N1—N2—C40.3 (2)N2—C4—N3—C5177.65 (17)
N1—N2—C4—O1179.9 (2)C3—N3—C5—C677.2 (3)
N1—N2—C4—N30.2 (2)C4—N3—C5—C6100.0 (2)
N1—C3—N3—C40.2 (2)N3—C5—C6—C759.8 (2)
C2—C3—N3—C4176.7 (2)C5—C6—C7—C8177.38 (17)
N1—C3—N3—C5177.33 (18)C6—C7—C8—C8i176.8 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1ii0.861.902.745 (3)168
C2—H2B···O1iii0.972.803.719 (3)158
C5—H5A···N2iv0.972.943.803 (3)148
C7—H7A···O1v0.972.683.547 (3)149
C6—H6A···N1vi0.972.743.685 (3)165
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H28N6O2
Mr336.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.7852 (10), 7.829 (2), 17.550 (3)
β (°) 95.894 (10)
V3)927.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.35 × 0.3
Data collection
DiffractometerEnraf-Nonius CAD-4 MACH3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1975, 1817, 1162
Rint0.023
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.03
No. of reflections1817
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.22

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CAD-4-PC Software, XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997), SHELXL97 and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C41.224 (2)C4—N31.367 (2)
C1—C21.480 (3)N3—C51.463 (2)
C2—C31.482 (3)C5—C61.509 (3)
C3—N11.288 (2)C6—C71.505 (3)
C3—N31.359 (2)C7—C81.512 (3)
N1—N21.372 (2)C8—C8i1.504 (4)
N2—C41.330 (2)
C1—C2—C3113.4 (2)N2—C4—N3103.79 (15)
N1—C3—N3111.56 (15)C3—N3—C4107.73 (14)
N1—C3—C2124.48 (17)C3—N3—C5128.06 (16)
N3—C3—C2123.88 (17)C4—N3—C5124.16 (16)
C3—N1—N2104.08 (14)N3—C5—C6113.17 (17)
C4—N2—N1112.83 (14)C7—C6—C5114.30 (16)
O1—C4—N2128.01 (18)C6—C7—C8112.91 (15)
O1—C4—N3128.20 (18)C8i—C8—C7113.70 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1ii0.861.902.745 (3)168
C2—H2B···O1iii0.972.803.719 (3)158
C5—H5A···N2iv0.972.943.803 (3)148
C7—H7A···O1v0.972.683.547 (3)149
C6—H6A···N1vi0.972.743.685 (3)165
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds