Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013460/ci6051sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013460/ci6051Isup2.hkl |
CCDC reference: 172217
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.010 Å
- R factor = 0.070
- wR factor = 0.218
- Data-to-parameter ratio = 7.1
checkCIF results
No syntax errors found ADDSYM reports no extra symmetry General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 68.00 From the CIF: _reflns_number_total 1284 Count of symmetry unique reflns 1302 Completeness (_total/calc) 98.62% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
The title compound was crystallized in aqueous solution from 1:2 stoichiometric ratio of L-arginine and nitric acid. Colorless needle-shaped crystals were grown.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.
Fig. 1. The molecular structure of the diprotonated argininium cation showing the atomic numbering scheme and 50% probability displacement ellipsoids (Spek, 1999). |
C6H16N4O22+·2NO3− | F(000) = 316 |
Mr = 300.25 | Dx = 1.519 Mg m−3 Dm = 1.519 Mg m−3 Dm measured by flotation in a mixture of carbon tetrachloride and xylene |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54180 Å |
a = 7.744 (5) Å | Cell parameters from 25 reflections |
b = 7.284 (5) Å | θ = 14.9–26.9° |
c = 11.653 (5) Å | µ = 1.22 mm−1 |
β = 92.600 (5)° | T = 293 K |
V = 656.6 (7) Å3 | Needles, colorless |
Z = 2 | 0.03 × 0.02 × 0.01 mm |
Enraf-Nonius sealed tube diffractometer | 1213 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 68.0°, θmin = 3.8° |
ω–2θ scans | h = −9→9 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→8 |
Tmin = 0.967, Tmax = 0.984 | l = 0→14 |
1284 measured reflections | 3 standard reflections every 60 min |
1284 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.218 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
1284 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.35 e Å−3 |
1 restraint | Δρmin = −0.44 e Å−3 |
C6H16N4O22+·2NO3− | V = 656.6 (7) Å3 |
Mr = 300.25 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 7.744 (5) Å | µ = 1.22 mm−1 |
b = 7.284 (5) Å | T = 293 K |
c = 11.653 (5) Å | 0.03 × 0.02 × 0.01 mm |
β = 92.600 (5)° |
Enraf-Nonius sealed tube diffractometer | 1213 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.967, Tmax = 0.984 | 3 standard reflections every 60 min |
1284 measured reflections | intensity decay: none |
1284 independent reflections |
R[F2 > 2σ(F2)] = 0.070 | 1 restraint |
wR(F2) = 0.218 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.35 e Å−3 |
1284 reflections | Δρmin = −0.44 e Å−3 |
181 parameters |
Experimental. Intensity measurement was not carried out for the Friedel pairs. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4833 (7) | 0.1038 (9) | 0.8694 (5) | 0.0397 (14) | |
O1 | 0.3517 (6) | 0.1002 (8) | 0.8013 (4) | 0.0445 (13) | |
O2 | 0.6214 (6) | 0.0334 (10) | 0.8405 (4) | 0.0531 (16) | |
O3 | 0.4728 (7) | 0.1721 (12) | 0.9646 (5) | 0.065 (2) | |
N2 | 0.7063 (8) | 0.4811 (11) | 0.6596 (6) | 0.0480 (16) | |
O4 | 0.8176 (8) | 0.6055 (11) | 0.6715 (5) | 0.0661 (19) | |
O5 | 0.6552 (8) | 0.4366 (9) | 0.5605 (5) | 0.0555 (16) | |
O6 | 0.6464 (11) | 0.4076 (14) | 0.7431 (6) | 0.090 (3) | |
O1A | 0.0856 (7) | 0.5379 (11) | 0.3654 (4) | 0.0589 (17) | |
O1B | 0.3654 (6) | 0.4622 (11) | 0.3822 (4) | 0.0531 (17) | |
H1B | 0.3669 | 0.5026 | 0.3166 | 0.080* | |
C11 | 0.2076 (9) | 0.4760 (13) | 0.4196 (6) | 0.0420 (18) | |
C12 | 0.1966 (10) | 0.4121 (11) | 0.5432 (6) | 0.0393 (16) | |
H12 | 0.0814 | 0.3603 | 0.5531 | 0.047* | |
N3 | 0.3284 (8) | 0.2670 (9) | 0.5704 (5) | 0.0398 (14) | |
H3A | 0.3205 | 0.2312 | 0.6430 | 0.060* | |
H3B | 0.4336 | 0.3119 | 0.5605 | 0.060* | |
H3C | 0.3096 | 0.1715 | 0.5239 | 0.060* | |
C13 | 0.2213 (9) | 0.5750 (11) | 0.6234 (6) | 0.0386 (16) | |
H13A | 0.1391 | 0.6701 | 0.6005 | 0.046* | |
H13B | 0.3366 | 0.6244 | 0.6160 | 0.046* | |
C14 | 0.1973 (10) | 0.5257 (11) | 0.7482 (6) | 0.0382 (16) | |
H14A | 0.0919 | 0.4551 | 0.7543 | 0.046* | |
H14B | 0.2934 | 0.4505 | 0.7766 | 0.046* | |
C15 | 0.1877 (10) | 0.6979 (11) | 0.8201 (6) | 0.0415 (17) | |
H15A | 0.2947 | 0.7658 | 0.8145 | 0.050* | |
H15B | 0.0947 | 0.7745 | 0.7886 | 0.050* | |
N4 | 0.1587 (7) | 0.6630 (11) | 0.9416 (5) | 0.0410 (15) | |
H4 | 0.2482 | 0.6442 | 0.9864 | 0.049* | |
C16 | 0.0089 (9) | 0.6584 (11) | 0.9869 (6) | 0.0339 (15) | |
N5 | 0.0006 (8) | 0.6455 (12) | 1.1008 (5) | 0.0504 (18) | |
H5A | 0.0941 | 0.6403 | 1.1435 | 0.061* | |
H5B | −0.0983 | 0.6423 | 1.1316 | 0.061* | |
N6 | −0.1363 (8) | 0.6680 (12) | 0.9253 (5) | 0.0496 (17) | |
H6A | −0.1347 | 0.6778 | 0.8518 | 0.060* | |
H6B | −0.2333 | 0.6645 | 0.9583 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.041 (3) | 0.042 (3) | 0.036 (3) | −0.001 (3) | −0.001 (2) | 0.004 (3) |
O1 | 0.038 (3) | 0.054 (3) | 0.042 (3) | −0.007 (3) | 0.004 (2) | 0.006 (3) |
O2 | 0.038 (3) | 0.080 (4) | 0.041 (3) | 0.019 (3) | 0.005 (2) | −0.006 (3) |
O3 | 0.043 (3) | 0.101 (6) | 0.052 (3) | 0.009 (4) | 0.003 (2) | −0.032 (4) |
N2 | 0.046 (4) | 0.052 (4) | 0.046 (4) | −0.001 (3) | −0.004 (3) | 0.010 (3) |
O4 | 0.065 (4) | 0.076 (5) | 0.056 (4) | −0.026 (4) | −0.010 (3) | 0.015 (4) |
O5 | 0.068 (4) | 0.057 (4) | 0.041 (3) | −0.005 (3) | −0.007 (3) | 0.005 (3) |
O6 | 0.111 (6) | 0.113 (7) | 0.047 (3) | −0.054 (5) | 0.006 (3) | 0.024 (4) |
O1A | 0.053 (3) | 0.085 (5) | 0.039 (3) | 0.009 (3) | 0.000 (2) | 0.007 (3) |
O1B | 0.036 (3) | 0.089 (5) | 0.034 (2) | −0.006 (3) | 0.003 (2) | 0.015 (3) |
C11 | 0.033 (3) | 0.058 (5) | 0.034 (3) | −0.005 (4) | −0.006 (3) | −0.001 (4) |
C12 | 0.046 (4) | 0.037 (4) | 0.034 (3) | 0.002 (3) | 0.005 (3) | 0.007 (3) |
N3 | 0.052 (3) | 0.035 (3) | 0.033 (3) | 0.000 (3) | 0.005 (2) | −0.001 (3) |
C13 | 0.037 (3) | 0.041 (4) | 0.038 (4) | 0.001 (3) | 0.009 (3) | 0.008 (3) |
C14 | 0.049 (4) | 0.038 (4) | 0.028 (3) | −0.001 (3) | 0.008 (3) | 0.003 (3) |
C15 | 0.047 (4) | 0.038 (4) | 0.040 (4) | −0.005 (3) | 0.012 (3) | −0.005 (3) |
N4 | 0.030 (3) | 0.060 (4) | 0.034 (3) | 0.010 (3) | −0.001 (2) | −0.008 (3) |
C16 | 0.025 (3) | 0.043 (4) | 0.035 (3) | 0.011 (3) | 0.004 (2) | −0.006 (3) |
N5 | 0.040 (3) | 0.070 (5) | 0.042 (3) | 0.005 (4) | 0.007 (2) | −0.006 (4) |
N6 | 0.039 (3) | 0.069 (5) | 0.041 (3) | 0.011 (4) | 0.009 (2) | −0.001 (4) |
N1—O3 | 1.222 (8) | C13—H13A | 0.97 |
N1—O2 | 1.246 (8) | C13—H13B | 0.97 |
N1—O1 | 1.262 (7) | C14—C15 | 1.512 (11) |
N2—O6 | 1.221 (9) | C14—H14A | 0.97 |
N2—O5 | 1.246 (8) | C14—H14B | 0.97 |
N2—O4 | 1.254 (10) | C15—N4 | 1.465 (9) |
O1A—C11 | 1.201 (9) | C15—H15A | 0.97 |
O1B—C11 | 1.320 (8) | C15—H15B | 0.97 |
O1B—H1B | 0.8200 | N4—C16 | 1.296 (9) |
C11—C12 | 1.520 (10) | N4—H4 | 0.86 |
C12—N3 | 1.493 (10) | C16—N6 | 1.308 (9) |
C12—C13 | 1.517 (11) | C16—N5 | 1.336 (9) |
C12—H12 | 0.98 | N5—H5A | 0.86 |
N3—H3A | 0.89 | N5—H5B | 0.86 |
N3—H3B | 0.89 | N6—H6A | 0.86 |
N3—H3C | 0.89 | N6—H6B | 0.86 |
C13—C14 | 1.518 (9) | ||
O3—N1—O2 | 120.4 (6) | C14—C13—H13B | 109.0 |
O3—N1—O1 | 119.6 (6) | H13A—C13—H13B | 107.8 |
O2—N1—O1 | 120.0 (6) | C15—C14—C13 | 110.2 (6) |
O6—N2—O5 | 120.5 (8) | C15—C14—H14A | 109.6 |
O6—N2—O4 | 120.8 (7) | C13—C14—H14A | 109.6 |
O5—N2—O4 | 118.6 (7) | C15—C14—H14B | 109.6 |
C11—O1B—H1B | 109.5 | C13—C14—H14B | 109.6 |
O1A—C11—O1B | 124.9 (7) | H14A—C14—H14B | 108.1 |
O1A—C11—C12 | 122.5 (6) | N4—C15—C14 | 113.9 (7) |
O1B—C11—C12 | 112.5 (6) | N4—C15—H15A | 108.8 |
N3—C12—C13 | 110.9 (6) | C14—C15—H15A | 108.8 |
N3—C12—C11 | 110.5 (6) | N4—C15—H15B | 108.8 |
C13—C12—C11 | 109.5 (7) | C14—C15—H15B | 108.8 |
N3—C12—H12 | 108.6 | H15A—C15—H15B | 107.7 |
C13—C12—H12 | 108.6 | C16—N4—C15 | 125.3 (6) |
C11—C12—H12 | 108.6 | C16—N4—H4 | 117.4 |
C12—N3—H3A | 109.5 | C15—N4—H4 | 117.4 |
C12—N3—H3B | 109.5 | N4—C16—N6 | 122.5 (6) |
H3A—N3—H3B | 109.5 | N4—C16—N5 | 119.4 (6) |
C12—N3—H3C | 109.5 | N6—C16—N5 | 118.0 (6) |
H3A—N3—H3C | 109.5 | C16—N5—H5A | 120.0 |
H3B—N3—H3C | 109.5 | C16—N5—H5B | 120.0 |
C12—C13—C14 | 112.8 (6) | H5A—N5—H5B | 120.0 |
C12—C13—H13A | 109.0 | C16—N6—H6A | 120.0 |
C14—C13—H13A | 109.0 | C16—N6—H6B | 120.0 |
C12—C13—H13B | 109.0 | H6A—N6—H6B | 120.0 |
O1A—C11—C12—N3 | 152.9 (9) | C12—C13—C14—C15 | −168.6 (6) |
O1B—C11—C12—N3 | −29.7 (10) | C13—C14—C15—N4 | 178.0 (6) |
O1A—C11—C12—C13 | −84.6 (10) | C14—C15—N4—C16 | −92.9 (10) |
O1B—C11—C12—C13 | 92.8 (9) | C15—N4—C16—N6 | 6.6 (14) |
N3—C12—C13—C14 | −62.5 (8) | C15—N4—C16—N5 | −172.6 (8) |
C11—C12—C13—C14 | 175.3 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1B—H1B···O2i | 0.82 | 1.85 | 2.653 (7) | 166 |
N3—H3A···O1 | 0.89 | 2.08 | 2.950 (8) | 165 |
N3—H3B···O5 | 0.89 | 1.94 | 2.823 (9) | 170 |
N3—H3C···O5ii | 0.89 | 2.00 | 2.855 (9) | 161 |
N3—H3C···O4ii | 0.89 | 2.49 | 3.212 (9) | 139 |
N4—H4···O3iii | 0.86 | 2.22 | 3.010 (8) | 153 |
N4—H4···O2iii | 0.86 | 2.36 | 3.138 (8) | 151 |
N5—H5A···O2iii | 0.86 | 2.34 | 3.086 (9) | 146 |
N5—H5B···O1iv | 0.86 | 2.17 | 3.022 (8) | 173 |
N6—H6A···O4v | 0.86 | 2.18 | 2.998 (9) | 158 |
N6—H6B···O3iv | 0.86 | 2.10 | 2.957 (9) | 177 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+2; (iv) −x, y+1/2, −z+2; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C6H16N4O22+·2NO3− |
Mr | 300.25 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 7.744 (5), 7.284 (5), 11.653 (5) |
β (°) | 92.600 (5) |
V (Å3) | 656.6 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.22 |
Crystal size (mm) | 0.03 × 0.02 × 0.01 |
Data collection | |
Diffractometer | Enraf-Nonius sealed tube diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.967, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1284, 1284, 1213 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.218, 1.08 |
No. of reflections | 1284 |
No. of parameters | 181 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.44 |
Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.
O1A—C11 | 1.201 (9) | C16—N6 | 1.308 (9) |
O1B—C11 | 1.320 (8) | C16—N5 | 1.336 (9) |
N4—C16 | 1.296 (9) | ||
N4—C16—N6 | 122.5 (6) | N6—C16—N5 | 118.0 (6) |
N4—C16—N5 | 119.4 (6) | ||
O1B—C11—C12—N3 | −29.7 (10) | C14—C15—N4—C16 | −92.9 (10) |
N3—C12—C13—C14 | −62.5 (8) | C15—N4—C16—N6 | 6.6 (14) |
C12—C13—C14—C15 | −168.6 (6) | C15—N4—C16—N5 | −172.6 (8) |
C13—C14—C15—N4 | 178.0 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1B—H1B···O2i | 0.82 | 1.85 | 2.653 (7) | 166 |
N3—H3A···O1 | 0.89 | 2.08 | 2.950 (8) | 165 |
N3—H3B···O5 | 0.89 | 1.94 | 2.823 (9) | 170 |
N3—H3C···O5ii | 0.89 | 2.00 | 2.855 (9) | 161 |
N3—H3C···O4ii | 0.89 | 2.49 | 3.212 (9) | 139 |
N4—H4···O3iii | 0.86 | 2.22 | 3.010 (8) | 153 |
N4—H4···O2iii | 0.86 | 2.36 | 3.138 (8) | 151 |
N5—H5A···O2iii | 0.86 | 2.34 | 3.086 (9) | 146 |
N5—H5B···O1iv | 0.86 | 2.17 | 3.022 (8) | 173 |
N6—H6A···O4v | 0.86 | 2.18 | 2.998 (9) | 158 |
N6—H6B···O3iv | 0.86 | 2.10 | 2.957 (9) | 177 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+2; (iv) −x, y+1/2, −z+2; (v) x−1, y, z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
L-Arginine is one of the essential amino acids widely distributed in biological substances. L-Arginine phosphate monohydrate is found to exhibit interesting non-linear optical properties (Jiang et al., 1983). The strong basicity of the guanidyl group are responsible for the functions in living matter (Aoki et al., 1971). The crystal structures of L-arginine dihydrate (Karle & Karle, 1964), L-arginine hydrochloride monohydrate (Dow et al., 1970), L-arginine phosphate monohydrate (Aoki et al., 1971), L-arginine perchlorate (Monaco et al., 1987; Srinivasan & Rajaram, 1997) and L-arginine diarsenate (Zalkin et al., 1989) have been reported. In the present study, the crystal structure of L-arginine dinitrate, (I), was undertaken to study conformational aspects.
The conformation of the arginine molecule may be characterized by three planar groups: (i) the carboxyl group, (ii) the side chain C atoms consisting of the α-, β-, γ- and δ-carbon (C12, C13, C14 and C15) and (iii) the guanidyl group including the δ-carbon atom (C15, N4, C16, N5 and N6) (Aoki et al., 1971). The conformation of the single-bonded carboxyl O atom is cis with respect to the amino N atom [-29.7 (10)°] for the diprotonated argininium molecule. In general, this conformation is found to be trans, whereas the present structure is different from earlier studies, viz. L-valine hydrochloride (Koetzle et al., 1974), DL-valine hydrochloride (Di Blasio et al., 1977), L-arginine diarsenate (Zalkin et al., 1989), bis(DL-methioninium) sulfate (Srinivasan et al., 2001), tri(L-isoleucinium) sulfate bisulfate (Sridhar et al., 2001) and L-valine L-valinium perchlorate monohydrate (Pandiarajan et al., 2001).
The side-chain conformation angle χ1 has a gauche II form [-62.5 (8)°], while χ2 and χ3 are in the trans form [-168.6 (6) and 178.0 (6)°] for the argininium molecule (Fig. 1). The other conformation angle, which has guanidyl group at the end of the residue, χ4 is [-92.9 (10)°] as expected and χ51 and χ52 are 6.6 (14) and -172.6 (8)°, respectively. These conformational angles are very similar to L-arginine diarsenate, except for χ4 which is 148.8°. The argininium molecule, in the present study, is in a slightly folded conformation.
The guanidyl group is protonated and exists as a guanidinium ion. The three C—N bonds in this group are nearly equal in length with an average value of 1.313 (9) Å. The three N—C—N angles are very close to 120°, confirming the planarity of the guanidyl group. Like other arginine molecules, the C15 atom is only slightly displaced [0.15 (2) Å] from the plane of the guanidyl group. The two crystallographically independent nitrate anions have similar geometries.
The carboxyl O atom of the diprotonated argininium cation is linked through a strong O—H···O hydrogen bond [2.653 (7) Å] with the nitrate anion (Fig. 2 and Table 2), while the amino-N and the N atoms of guanidyl group are linked through normal hydrogen bonds with the two nitrate anions. Chelated three-centered hydrogen bonds are observed in the case of the Nα and Nε atoms (N3—H3C···O5ii and N3—H3C···O4ii, and N4—H4···O3iii and N4—H4···O2iii; Jeffrey & Saenger, 1991). The O atom (O2) of nitrate anion links the carboxyl O atom (O1B), Nε and Nη1 (N5) through a chain along the z axis. The O atoms of the second nitrate anion (O5 and O4) links the α-amino N atom and Nη2 (N6) through a chain along the x axis. The intermolecular guanidyl–nitrate interactions are observed as (i) type D between N atoms ε, η1 with O2; (ii) type A between N atoms η1, η2 with O3 and O1 and (iii) type B between N atoms ε, η1 with O3 and O2 of the nitrate anions (Salunke & Vijayan, 1981). An intermolecular short contact of 2.903 (12) Å is observed between O4 and the carboxyl C11(1 - x, 1/2 + y, 1 - z) atom.