Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013321/ci6235sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013321/ci6235Isup2.hkl |
CCDC reference: 217610
Key indicators
- Single-crystal X-ray study
- T = 120 K
- Mean (C-C) = 0.003 Å
- R factor = 0.039
- wR factor = 0.106
- Data-to-parameter ratio = 14.4
checkCIF results
No syntax errors found ADDSYM reports no extra symmetry
The title compound was purchased from National Chemicals, Vadodara, Gujarat, India. Diffraction quality crystals were obtained by recrystallizing the sample from a 1:1 mixture of petroleum ether and acetone.
H atoms were located from a difference Fourier map and both positional and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.90 (3)–0.95 (3) Å and the C—C—H angles for the aromatic ring are in the range 118 (2)–123 (2)°. The highest peak in the difference Fourier map lies close to the Cl atom (0.84 Å).
Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
C6H4ClNO4S | F(000) = 448 |
Mr = 221.61 | Dx = 1.745 Mg m−3 |
Monoclinic, P21/n | Melting point: 333-335 K K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8868 (4) Å | Cell parameters from 823 reflections |
b = 9.4298 (4) Å | θ = 2.8–27.5° |
c = 11.8789 (5) Å | µ = 0.68 mm−1 |
β = 107.318 (2)° | T = 120 K |
V = 843.40 (7) Å3 | Block, colourless |
Z = 4 | 0.39 × 0.24 × 0.13 mm |
Bruker SMART CCD 6K area-detector diffractometer | 1928 independent reflections |
Radiation source: fine-focus sealed tube | 1667 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8 pixels mm-1 | θmax = 27.5°, θmin = 2.8° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | k = −12→12 |
Tmin = 0.822, Tmax = 0.916 | l = −15→15 |
9420 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.872P] where P = (Fo2 + 2Fc2)/3 |
1928 reflections | (Δ/σ)max < 0.001 |
134 parameters | Δρmax = 1.26 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
C6H4ClNO4S | V = 843.40 (7) Å3 |
Mr = 221.61 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.8868 (4) Å | µ = 0.68 mm−1 |
b = 9.4298 (4) Å | T = 120 K |
c = 11.8789 (5) Å | 0.39 × 0.24 × 0.13 mm |
β = 107.318 (2)° |
Bruker SMART CCD 6K area-detector diffractometer | 1928 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 1667 reflections with I > 2σ(I) |
Tmin = 0.822, Tmax = 0.916 | Rint = 0.028 |
9420 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 1.08 | Δρmax = 1.26 e Å−3 |
1928 reflections | Δρmin = −0.69 e Å−3 |
134 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.32306 (8) | 0.43025 (6) | 0.53772 (6) | 0.03728 (19) | |
S1 | 0.10523 (7) | 0.30523 (5) | 0.49511 (4) | 0.02122 (16) | |
O1 | 0.3023 (3) | −0.28186 (18) | 0.32733 (16) | 0.0359 (4) | |
O2 | 0.1028 (3) | −0.13592 (19) | 0.22689 (15) | 0.0386 (4) | |
O3 | 0.0254 (2) | 0.32696 (18) | 0.58608 (16) | 0.0316 (4) | |
O4 | 0.0094 (3) | 0.3315 (2) | 0.37543 (16) | 0.0410 (5) | |
N1 | 0.2148 (3) | −0.17316 (19) | 0.31766 (16) | 0.0248 (4) | |
C1 | 0.2439 (3) | −0.0821 (2) | 0.42233 (18) | 0.0203 (4) | |
C2 | 0.3410 (3) | −0.1353 (2) | 0.5311 (2) | 0.0244 (4) | |
C3 | 0.3635 (3) | −0.0513 (2) | 0.6308 (2) | 0.0271 (5) | |
C4 | 0.2911 (3) | 0.0838 (2) | 0.61985 (19) | 0.0247 (5) | |
C5 | 0.1983 (3) | 0.1340 (2) | 0.50833 (18) | 0.0190 (4) | |
C6 | 0.1716 (3) | 0.0529 (2) | 0.40713 (18) | 0.0194 (4) | |
H2 | 0.386 (4) | −0.224 (3) | 0.540 (2) | 0.026 (6)* | |
H3 | 0.429 (4) | −0.082 (3) | 0.706 (3) | 0.040 (8)* | |
H4 | 0.303 (3) | 0.139 (3) | 0.685 (2) | 0.025 (6)* | |
H6 | 0.108 (4) | 0.086 (3) | 0.330 (2) | 0.026 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0286 (3) | 0.0218 (3) | 0.0638 (4) | −0.0036 (2) | 0.0174 (3) | −0.0001 (3) |
S1 | 0.0207 (3) | 0.0197 (3) | 0.0215 (3) | 0.00173 (19) | 0.0036 (2) | −0.00229 (18) |
O1 | 0.0443 (10) | 0.0287 (9) | 0.0386 (10) | 0.0089 (8) | 0.0183 (8) | −0.0060 (7) |
O2 | 0.0581 (12) | 0.0280 (9) | 0.0229 (8) | 0.0007 (8) | 0.0015 (8) | −0.0050 (7) |
O3 | 0.0325 (9) | 0.0284 (9) | 0.0398 (10) | −0.0031 (7) | 0.0194 (8) | −0.0083 (7) |
O4 | 0.0527 (12) | 0.0318 (9) | 0.0266 (9) | 0.0173 (8) | −0.0064 (8) | −0.0034 (7) |
N1 | 0.0318 (10) | 0.0220 (9) | 0.0230 (9) | −0.0032 (7) | 0.0117 (8) | −0.0015 (7) |
C1 | 0.0210 (10) | 0.0192 (10) | 0.0216 (10) | −0.0028 (8) | 0.0077 (8) | −0.0022 (8) |
C2 | 0.0245 (10) | 0.0192 (11) | 0.0286 (11) | 0.0008 (8) | 0.0067 (9) | 0.0028 (8) |
C3 | 0.0310 (12) | 0.0247 (11) | 0.0210 (10) | 0.0008 (9) | 0.0010 (9) | 0.0034 (8) |
C4 | 0.0279 (11) | 0.0249 (11) | 0.0186 (10) | −0.0009 (8) | 0.0027 (8) | −0.0015 (8) |
C5 | 0.0189 (9) | 0.0172 (10) | 0.0200 (9) | 0.0004 (7) | 0.0043 (7) | 0.0008 (7) |
C6 | 0.0189 (10) | 0.0211 (10) | 0.0174 (9) | −0.0015 (8) | 0.0044 (8) | 0.0016 (7) |
S1—O3 | 1.4182 (17) | C1—C6 | 1.384 (3) |
S1—O4 | 1.4193 (18) | C1—C2 | 1.385 (3) |
S1—C5 | 1.761 (2) | C6—H6 | 0.95 (3) |
S1—Cl1 | 2.0198 (8) | C3—C4 | 1.386 (3) |
O1—N1 | 1.222 (3) | C3—C2 | 1.391 (3) |
N1—O2 | 1.224 (3) | C3—H3 | 0.93 (3) |
N1—C1 | 1.472 (3) | C4—H4 | 0.91 (3) |
C5—C6 | 1.387 (3) | C2—H2 | 0.90 (3) |
C5—C4 | 1.392 (3) | ||
O3—S1—O4 | 120.87 (12) | C2—C1—N1 | 118.73 (19) |
O3—S1—C5 | 109.41 (10) | C1—C6—C5 | 116.33 (19) |
O4—S1—C5 | 109.45 (10) | C1—C6—H6 | 120.5 (16) |
O3—S1—Cl1 | 105.20 (8) | C5—C6—H6 | 123.2 (16) |
O4—S1—Cl1 | 107.98 (10) | C4—C3—C2 | 119.9 (2) |
C5—S1—Cl1 | 102.24 (7) | C4—C3—H3 | 118.2 (19) |
O1—N1—O2 | 124.23 (19) | C2—C3—H3 | 121.9 (19) |
O1—N1—C1 | 117.94 (18) | C3—C4—C5 | 119.2 (2) |
O2—N1—C1 | 117.83 (18) | C3—C4—H4 | 120.6 (16) |
C6—C5—C4 | 122.58 (19) | C5—C4—H4 | 120.2 (16) |
C6—C5—S1 | 118.46 (15) | C1—C2—C3 | 118.9 (2) |
C4—C5—S1 | 118.93 (16) | C1—C2—H2 | 122.4 (18) |
C6—C1—C2 | 123.1 (2) | C3—C2—H2 | 118.6 (17) |
C6—C1—N1 | 118.14 (18) | ||
O3—S1—C5—C6 | 135.78 (17) | C2—C1—C6—C5 | −1.1 (3) |
O4—S1—C5—C6 | 1.2 (2) | N1—C1—C6—C5 | 178.45 (18) |
Cl1—S1—C5—C6 | −113.06 (16) | C4—C5—C6—C1 | −0.6 (3) |
O3—S1—C5—C4 | −42.4 (2) | S1—C5—C6—C1 | −178.63 (15) |
O4—S1—C5—C4 | −176.90 (18) | C2—C3—C4—C5 | −0.7 (3) |
Cl1—S1—C5—C4 | 68.79 (18) | C6—C5—C4—C3 | 1.5 (3) |
O1—N1—C1—C6 | 167.96 (19) | S1—C5—C4—C3 | 179.53 (17) |
O2—N1—C1—C6 | −12.9 (3) | C6—C1—C2—C3 | 1.8 (3) |
O1—N1—C1—C2 | −12.5 (3) | N1—C1—C2—C3 | −177.8 (2) |
O2—N1—C1—C2 | 166.6 (2) | C4—C3—C2—C1 | −0.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O4 | 0.95 (3) | 2.55 (3) | 2.897 (3) | 101.9 (18) |
C6—H6···O2 | 0.95 (3) | 2.42 (3) | 2.712 (3) | 97.1 (18) |
C4—H4···O3 | 0.91 (3) | 2.79 (3) | 3.051 (3) | 97.8 (18) |
C2—H2···O1 | 0.90 (3) | 2.48 (3) | 2.725 (3) | 96.0 (19) |
C4—H4···O4i | 0.91 (3) | 2.38 (3) | 3.116 (3) | 138 (2) |
C6—H6···O1ii | 0.95 (3) | 2.52 (3) | 3.251 (3) | 134 (2) |
C3—H3···O2iii | 0.93 (3) | 2.97 (3) | 3.504 (3) | 118 (2) |
C2—H2···O2iii | 0.90 (3) | 2.71 (3) | 3.387 (3) | 133 (2) |
C3—H3···O3iv | 0.93 (3) | 2.54 (3) | 3.412 (3) | 156 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y−1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C6H4ClNO4S |
Mr | 221.61 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 7.8868 (4), 9.4298 (4), 11.8789 (5) |
β (°) | 107.318 (2) |
V (Å3) | 843.40 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.39 × 0.24 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART CCD 6K area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.822, 0.916 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9420, 1928, 1667 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.08 |
No. of reflections | 1928 |
No. of parameters | 134 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 1.26, −0.69 |
Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXTL.
S1—O3 | 1.4182 (17) | C5—C6 | 1.387 (3) |
S1—O4 | 1.4193 (18) | C5—C4 | 1.392 (3) |
S1—C5 | 1.761 (2) | C1—C6 | 1.384 (3) |
S1—Cl1 | 2.0198 (8) | C1—C2 | 1.385 (3) |
O1—N1 | 1.222 (3) | C3—C4 | 1.386 (3) |
N1—O2 | 1.224 (3) | C3—C2 | 1.391 (3) |
N1—C1 | 1.472 (3) | ||
O3—S1—O4 | 120.87 (12) | C5—S1—Cl1 | 102.24 (7) |
O3—S1—C5 | 109.41 (10) | O1—N1—O2 | 124.23 (19) |
O4—S1—C5 | 109.45 (10) | O1—N1—C1 | 117.94 (18) |
O3—S1—Cl1 | 105.20 (8) | O2—N1—C1 | 117.83 (18) |
O4—S1—Cl1 | 107.98 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O4 | 0.95 (3) | 2.55 (3) | 2.897 (3) | 101.9 (18) |
C6—H6···O2 | 0.95 (3) | 2.42 (3) | 2.712 (3) | 97.1 (18) |
C4—H4···O3 | 0.91 (3) | 2.79 (3) | 3.051 (3) | 97.8 (18) |
C2—H2···O1 | 0.90 (3) | 2.48 (3) | 2.725 (3) | 96.0 (19) |
C4—H4···O4i | 0.91 (3) | 2.38 (3) | 3.116 (3) | 138 (2) |
C6—H6···O1ii | 0.95 (3) | 2.52 (3) | 3.251 (3) | 134 (2) |
C3—H3···O2iii | 0.93 (3) | 2.97 (3) | 3.504 (3) | 118 (2) |
C2—H2···O2iii | 0.90 (3) | 2.71 (3) | 3.387 (3) | 133 (2) |
C3—H3···O3iv | 0.93 (3) | 2.54 (3) | 3.412 (3) | 156 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y−1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+3/2. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
Structural studies on aryl sulfonyl chlorides are essential for understanding the mechanisms of nucleophilic substitution reactions at the sulfonyl reaction center (Kislov & Ivanov, 2000). Substitution reactions of sulfonyl chlorides bridge inorganic and organic chemistry (Koo et al., 2000). The complex of 4-toluenesulfonyl chloride with protein had been reported as a ruminant feed material (Miller, US patent No. 3711289). Sulfonyl halides are used as initiators in the metal catalyzed living radical polymerization of acrylonitrile (Barboiu & Percec, 2002). Arene sulfonyl halides were reported to be the universal class of functional initiators for metal catalyzed living radical polymerization of styrenes, methacrylates and acrylates (Percec et al., 1998). The present crystal structure determination of the title compound, (I), is undertaken owing to the biological activity and synthetic utility of its analogues.
A search of the July 2002 release of Cambridge Structural Database (Allen, 2002) revealed 11 structures (with the following refcodes: COKCOU, FAQJOW, FOHYAC, KADZOE, NAQLUM, NAXFEX, NAXFIB, NBZSOC, QQQHJA, QQQHJA01 and SUTYAH) that are closely related to the title compound. The S═O, S—C and S—Cl bond lengths (Table 1) are comparable to those found in these structures. The crystal structure of (I) is stabilized by weak C—H···O interactions. The range of H···O distances (Table 2) found in (I) agrees with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C6—H6···O4 and C6—H6···O2 (Fig. 1) interactions constitute a pair of bifurcated donor bonds generating two rings fused to each other each of graph set (Etter, 1990; Bernstein et al., 1995) motif S(5). Each of the C4—H4···O3 and C2—H2···O1 (Fig. 2) interactions generate S(5) motif. The C3—H3···O2iii and C2—H2···O2iii (Fig. 2 and Table 2 for symmetry codes) interactions constitute a pair of bifurcated acceptor bonds generating a ring of graph set R12(5). The molecular aggregation is completed by several other weak C—H···O interactions (Table 2 and Fig. 2). Other short intermolecular contacts are Cl1···O1(1 − x, −y, 1 − z) of 3.231 (2) Å and Cl1···Cl1(1 − x, 1 − y, 1 − z) of 3.437 (1) Å.