Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C23H28N2O2, the pyran ring in the xanthene moiety adopts a half-chair conformation. The molecular structure is influenced by intramolecular N—H...N and C—H...O hydrogen bonds and the crystal structure is stabilized by C—H...O and C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017173/ci6248sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017173/ci6248Isup2.hkl
Contains datablock I

CCDC reference: 222863

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.068
  • wR factor = 0.179
  • Data-to-parameter ratio = 17.3

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ..... 0.97
Alert level B CELLV02_ALERT_1_B The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 4 Calculated cell volume su = 13.00 Cell volume su given = 18.00 DIFMX01_ALERT_2_B The maximum difference density is > 0.1*ZMAX*1.00 _refine_diff_density_max given = 0.966 Test value = 0.800 PLAT097_ALERT_2_B Maximum (Positive) Residual Density .......... 0.97 e/A   3
Alert level C DIFMX02_ALERT_1_C The minimum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .. 2.79 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ... ?
1 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

An X-ray study of the title compound, (I), was of interest because xanthene derivatives have been well documented as biogenic precursors (Vinod & Gupta, 1979) and neuroleptic (Lassen et al., 1980) and antiallergic (Pfister, 1980) agents. They possess antiviral activity (Carr et al., 1976). These derivatives act as a potent human CCRI receptor antagonists (Naya et al., 2003).

In the title molecule (Fig. 1), bond lengths in the aromatic rings (C and E), the cyclohexane ring (A) and the morpholine ring (D) have normal values (Allen et al., 1987). The geometry of the pyran ring in the xanthene moiety (Table 1) is comparable to that observed in other xanthene derivatives (Jeyakanthan et al., 1999; Miao et al., 1996). The sum of the bond angles around N15 of 337.2 (2)° is indicative of sp3 character of the atom. The aromatic rings E and C are almost perpendicular to each other with a dihedral angle of 85.5 (1)°. The pyran ring in the xanthene moiety adopts a half-chair conformation with asymmetry parameter DC2(C7—C2) = 0.003 (1) (Nardelli, 1983). The cyclohexane ring (A) and the morpholine ring (D) both adopt chair conformations. The molecular structure is influenced by weak N—H···N and C—H···O hydrogen bonds. The crystal structure is stabilized by C—H···O interactions and C—H···π interactions involving the symmetry-related aromatic ring C (Table 2 and Fig. 2).

Experimental top

A solution of 0.3 g of cyclohexanone, 0.27 g of morpholine and catalytic amount of InCl3 in 20 ml of acetonitrile was refluxed for 3 h. The reaction mixture was cooled to room temperature under a nitrogen atmosphere and 0.6 g of o-hydroxybenzylideneaniline was added. The reaction mixture was stirred at ambient temperature for 20 min. After completion of the reaction, the reaction mixture was quenched by addition of water and extracted with ethyl acetate. The combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The crude crystalline product was recrystallized using ethyl acetate to yield the title compound. The melting point of the title compound is 429–431 K.

Refinement top

H atoms were positioned geometrically with C—H distances fixed in the range 0.93–0.98 Å and N—H distance at 0.86 Å. They were allowed to ride on their parent atoms with the isotropic displacement parameter Uiso(H) set at 1.2Ueq(C or N). The final cycles of refinement showed the highest difference peak of 0.97 e Å−3, much larger than the absolute value of the deepest hole (−0.35 e Å−3). This peak was located at a distance of 1.27 Å from both C8 and N21. Possibility of a disordered aminophenyl substituent (N21/C22–C27) was examined but we were unable to find a suitable disorder model. Reflections were measured to θmax of 27.97° with 91% completeness, but the data are 97% complete to 25°.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990)'; software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of the molecules, viewed down the a axis.
N-(4a-Morpholino-2,3,4,4a,9,9a-hexahydro-1H-xanthen-9-yl)phenylamine top
Crystal data top
C23H28N2O2Z = 2
Mr = 364.47F(000) = 392
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6452 (7) ÅCell parameters from 2317 reflections
b = 10.1247 (8) Åθ = 2.4–27.2°
c = 11.1168 (9) ŵ = 0.08 mm1
α = 81.359 (1)°T = 293 K
β = 80.165 (1)°Block, colourless
γ = 64.920 (1)°0.26 × 0.20 × 0.16 mm
V = 965.11 (18) Å3
Data collection top
CCD area-detector
diffractometer
3415 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ω scansh = 1212
6035 measured reflectionsk = 1113
4223 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.088P)2 + 0.492P]
where P = (Fo2 + 2Fc2)/3
4223 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H28N2O2γ = 64.920 (1)°
Mr = 364.47V = 965.11 (18) Å3
Triclinic, P1Z = 2
a = 9.6452 (7) ÅMo Kα radiation
b = 10.1247 (8) ŵ = 0.08 mm1
c = 11.1168 (9) ÅT = 293 K
α = 81.359 (1)°0.26 × 0.20 × 0.16 mm
β = 80.165 (1)°
Data collection top
CCD area-detector
diffractometer
3415 reflections with I > 2σ(I)
6035 measured reflectionsRint = 0.014
4223 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.02Δρmax = 0.97 e Å3
4223 reflectionsΔρmin = 0.35 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63667 (15)0.25375 (14)0.17134 (11)0.0347 (3)
C20.7884 (2)0.1737 (2)0.20895 (16)0.0308 (4)
C30.8958 (2)0.1738 (2)0.09030 (18)0.0385 (5)
H3A1.00160.11460.10570.046*
H3B0.87260.12950.02910.046*
C40.8796 (3)0.3276 (3)0.0403 (2)0.0505 (6)
H4A0.95290.32240.03240.061*
H4B0.77670.38470.01730.061*
C50.9088 (3)0.4018 (3)0.1363 (2)0.0556 (6)
H5A0.89520.50060.10440.067*
H5B1.01430.34850.15480.067*
C60.7984 (3)0.4073 (2)0.2534 (2)0.0437 (5)
H6A0.69370.46830.23600.052*
H6B0.82180.45200.31410.052*
C70.8086 (2)0.2550 (2)0.30666 (17)0.0333 (4)
H70.91140.19840.33260.040*
C80.6889 (2)0.2674 (2)0.41974 (17)0.0374 (4)
H80.68170.34850.46240.045*
C90.5305 (2)0.3101 (2)0.38125 (17)0.0330 (4)
C100.3968 (2)0.3610 (2)0.46364 (18)0.0371 (4)
H100.40520.36410.54520.045*
C110.2532 (2)0.4067 (2)0.4277 (2)0.0437 (5)
H110.16590.43800.48490.052*
C120.2387 (2)0.4061 (2)0.3068 (2)0.0468 (5)
H120.14140.44110.28160.056*
C130.3687 (2)0.3536 (2)0.2228 (2)0.0409 (5)
H130.35890.35190.14140.049*
C140.5143 (2)0.30333 (19)0.26049 (17)0.0320 (4)
N150.79895 (17)0.02740 (17)0.26236 (14)0.0315 (4)
C160.9542 (2)0.0761 (2)0.2889 (2)0.0413 (5)
H16A0.99490.03190.33760.050*
H16B1.02230.09990.21300.050*
C170.9471 (3)0.2134 (2)0.3580 (2)0.0487 (5)
H17A1.05000.28110.37560.058*
H17B0.88280.18920.43560.058*
O180.88758 (19)0.28253 (16)0.29196 (16)0.0530 (4)
C190.7387 (3)0.1820 (3)0.2638 (2)0.0519 (6)
H19A0.67020.15630.33940.062*
H19B0.69830.22860.21720.062*
C200.7407 (3)0.0447 (2)0.1912 (2)0.0421 (5)
H20A0.80630.06880.11410.050*
H20B0.63730.02080.17320.050*
N210.7352 (2)0.1391 (2)0.50510 (16)0.0445 (4)
H210.79490.05620.47720.053*
C220.6874 (2)0.1424 (3)0.63196 (18)0.0419 (5)
C230.6910 (3)0.0140 (3)0.6964 (2)0.0498 (5)
H230.71750.06810.65480.060*
C240.6557 (3)0.0060 (3)0.8213 (2)0.0578 (7)
H240.66000.08220.86310.069*
C250.6145 (3)0.1239 (3)0.8861 (2)0.0600 (7)
H250.59070.11680.97080.072*
C260.6090 (3)0.2535 (3)0.8234 (2)0.0556 (6)
H260.58050.33530.86580.067*
C270.6459 (3)0.2627 (3)0.6965 (2)0.0476 (5)
H270.64250.35060.65490.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (7)0.0364 (7)0.0269 (6)0.0094 (6)0.0044 (5)0.0023 (5)
C20.0300 (9)0.0298 (9)0.0293 (9)0.0105 (7)0.0004 (7)0.0023 (7)
C30.0438 (11)0.0405 (11)0.0313 (10)0.0199 (9)0.0063 (8)0.0075 (8)
C40.0680 (16)0.0482 (13)0.0369 (11)0.0323 (12)0.0127 (10)0.0044 (9)
C50.0713 (17)0.0500 (13)0.0543 (14)0.0389 (13)0.0132 (12)0.0104 (11)
C60.0539 (13)0.0390 (11)0.0416 (11)0.0229 (10)0.0022 (9)0.0105 (9)
C70.0318 (9)0.0367 (10)0.0305 (9)0.0137 (8)0.0012 (7)0.0039 (7)
C80.0359 (10)0.0451 (11)0.0275 (9)0.0139 (9)0.0018 (7)0.0030 (8)
C90.0325 (9)0.0305 (9)0.0314 (9)0.0100 (7)0.0017 (7)0.0004 (7)
C100.0386 (10)0.0341 (10)0.0340 (10)0.0132 (8)0.0027 (8)0.0026 (8)
C110.0328 (10)0.0356 (10)0.0572 (13)0.0121 (8)0.0056 (9)0.0060 (9)
C120.0301 (10)0.0389 (11)0.0687 (15)0.0091 (9)0.0111 (10)0.0066 (10)
C130.0412 (11)0.0348 (10)0.0457 (11)0.0111 (9)0.0138 (9)0.0045 (9)
C140.0328 (9)0.0255 (8)0.0337 (9)0.0091 (7)0.0032 (7)0.0005 (7)
N150.0281 (8)0.0305 (8)0.0335 (8)0.0110 (6)0.0029 (6)0.0002 (6)
C160.0317 (10)0.0345 (10)0.0532 (12)0.0102 (8)0.0047 (9)0.0010 (9)
C170.0445 (12)0.0335 (10)0.0595 (14)0.0079 (9)0.0111 (10)0.0022 (10)
O180.0551 (10)0.0327 (8)0.0683 (11)0.0156 (7)0.0080 (8)0.0019 (7)
C190.0524 (13)0.0433 (12)0.0667 (15)0.0265 (11)0.0116 (11)0.0023 (11)
C200.0451 (11)0.0399 (11)0.0449 (12)0.0207 (9)0.0092 (9)0.0001 (9)
N210.0517 (11)0.0376 (9)0.0367 (9)0.0119 (8)0.0042 (8)0.0021 (7)
C220.0309 (10)0.0601 (13)0.0322 (10)0.0170 (9)0.0076 (8)0.0028 (9)
C230.0455 (12)0.0528 (13)0.0524 (13)0.0200 (11)0.0090 (10)0.0049 (10)
C240.0557 (15)0.0605 (15)0.0574 (15)0.0298 (12)0.0132 (12)0.0205 (12)
C250.0594 (15)0.093 (2)0.0260 (10)0.0330 (14)0.0065 (10)0.0065 (12)
C260.0514 (14)0.0619 (15)0.0546 (14)0.0198 (12)0.0090 (11)0.0153 (12)
C270.0436 (12)0.0476 (12)0.0519 (13)0.0222 (10)0.0098 (10)0.0104 (10)
Geometric parameters (Å, º) top
O1—C141.369 (2)C13—C141.392 (3)
O1—C21.440 (2)C13—H130.93
C2—N151.479 (2)N15—C201.465 (3)
C2—C31.532 (2)N15—C161.468 (2)
C2—C71.540 (3)C16—C171.506 (3)
C3—C41.524 (3)C16—H16A0.97
C3—H3A0.97C16—H16B0.97
C3—H3B0.97C17—O181.414 (3)
C4—C51.519 (3)C17—H17A0.97
C4—H4A0.97C17—H17B0.97
C4—H4B0.97O18—C191.420 (3)
C5—C61.527 (3)C19—C201.505 (3)
C5—H5A0.97C19—H19A0.97
C5—H5B0.97C19—H19B0.97
C6—C71.534 (3)C20—H20A0.97
C6—H6A0.97C20—H20B0.97
C6—H6B0.97N21—C221.408 (3)
C7—C81.535 (3)N21—H210.86
C7—H70.98C22—C231.378 (3)
C8—N211.439 (3)C22—C271.381 (3)
C8—C91.521 (3)C23—C241.371 (4)
C8—H80.98C23—H230.93
C9—C141.393 (3)C24—C251.364 (4)
C9—C101.394 (3)C24—H240.93
C10—C111.372 (3)C25—C261.374 (4)
C10—H100.93C25—H250.93
C11—C121.376 (3)C26—C271.394 (3)
C11—H110.93C26—H260.93
C12—C131.382 (3)C27—H270.93
C12—H120.93
C14—O1—C2118.1 (1)C12—C13—C14119.8 (2)
O1—C2—N15107.33 (14)C12—C13—H13120.1
O1—C2—C3103.46 (15)C14—C13—H13120.1
N15—C2—C3114.86 (15)O1—C14—C13116.00 (17)
O1—C2—C7108.99 (14)O1—C14—C9123.27 (17)
N15—C2—C7109.78 (14)C13—C14—C9120.68 (18)
C3—C2—C7112.01 (15)C20—N15—C16107.9 (2)
C4—C3—C2112.25 (16)C20—N15—C2115.0 (2)
C4—C3—H3A109.2C16—N15—C2114.3 (1)
C2—C3—H3A109.2N15—C16—C17109.55 (17)
C4—C3—H3B109.2N15—C16—H16A109.8
C2—C3—H3B109.2C17—C16—H16A109.8
H3A—C3—H3B107.9N15—C16—H16B109.8
C5—C4—C3110.25 (19)C17—C16—H16B109.8
C5—C4—H4A109.6H16A—C16—H16B108.2
C3—C4—H4A109.6O18—C17—C16112.42 (19)
C5—C4—H4B109.6O18—C17—H17A109.1
C3—C4—H4B109.6C16—C17—H17A109.1
H4A—C4—H4B108.1O18—C17—H17B109.1
C4—C5—C6110.77 (19)C16—C17—H17B109.1
C4—C5—H5A109.5H17A—C17—H17B107.9
C6—C5—H5A109.5C17—O18—C19108.99 (17)
C4—C5—H5B109.5O18—C19—C20112.28 (18)
C6—C5—H5B109.5O18—C19—H19A109.1
H5A—C5—H5B108.1C20—C19—H19A109.1
C5—C6—C7112.50 (18)O18—C19—H19B109.1
C5—C6—H6A109.1C20—C19—H19B109.1
C7—C6—H6A109.1H19A—C19—H19B107.9
C5—C6—H6B109.1N15—C20—C19109.22 (18)
C7—C6—H6B109.1N15—C20—H20A109.8
H6A—C6—H6B107.8C19—C20—H20A109.8
C6—C7—C8110.36 (16)N15—C20—H20B109.8
C6—C7—C2110.82 (15)C19—C20—H20B109.8
C8—C7—C2111.22 (15)H20A—C20—H20B108.3
C6—C7—H7108.1C22—N21—C8123.27 (18)
C8—C7—H7108.1C22—N21—H21118.4
C2—C7—H7108.1C8—N21—H21118.4
N21—C8—C9113.15 (17)C23—C22—C27118.2 (2)
N21—C8—C7112.77 (17)C23—C22—N21117.2 (2)
C9—C8—C7110.48 (15)C27—C22—N21124.6 (2)
N21—C8—H8106.7C24—C23—C22120.6 (2)
C9—C8—H8106.7C24—C23—H23119.7
C7—C8—H8106.7C22—C23—H23119.7
C14—C9—C10117.68 (18)C25—C24—C23121.8 (2)
C14—C9—C8120.62 (16)C25—C24—H24119.1
C10—C9—C8121.67 (17)C23—C24—H24119.1
C11—C10—C9121.80 (19)C24—C25—C26118.6 (2)
C11—C10—H10119.1C24—C25—H25120.7
C9—C10—H10119.1C26—C25—H25120.7
C10—C11—C12119.79 (19)C25—C26—C27120.2 (2)
C10—C11—H11120.1C25—C26—H26119.9
C12—C11—H11120.1C27—C26—H26119.9
C11—C12—C13120.1 (2)C22—C27—C26120.6 (2)
C11—C12—H12119.9C22—C27—H27119.7
C13—C12—H12119.9C26—C27—H27119.7
C14—O1—C2—N1573.21 (18)C12—C13—C14—O1179.76 (18)
C14—O1—C2—C3164.95 (15)C12—C13—C14—C92.3 (3)
C14—O1—C2—C745.6 (2)C10—C9—C14—O1179.21 (17)
O1—C2—C3—C463.5 (2)C8—C9—C14—O12.6 (3)
N15—C2—C3—C4179.82 (17)C10—C9—C14—C133.5 (3)
C7—C2—C3—C453.7 (2)C8—C9—C14—C13174.70 (18)
C2—C3—C4—C556.5 (3)O1—C2—N15—C2045.73 (19)
C3—C4—C5—C657.4 (3)C3—C2—N15—C2068.7 (2)
C4—C5—C6—C756.8 (3)C7—C2—N15—C20164.05 (16)
C5—C6—C7—C8176.72 (19)O1—C2—N15—C16171.42 (15)
C5—C6—C7—C253.1 (2)C3—C2—N15—C1657.0 (2)
O1—C2—C7—C662.82 (19)C7—C2—N15—C1670.27 (19)
N15—C2—C7—C6179.89 (15)C20—N15—C16—C1758.2 (2)
C3—C2—C7—C651.0 (2)C2—N15—C16—C17172.44 (17)
O1—C2—C7—C860.34 (19)N15—C16—C17—O1859.0 (2)
N15—C2—C7—C856.9 (2)C16—C17—O18—C1957.4 (2)
C3—C2—C7—C8174.20 (16)C17—O18—C19—C2057.9 (3)
C6—C7—C8—N21152.43 (18)C16—N15—C20—C1958.6 (2)
C2—C7—C8—N2184.2 (2)C2—N15—C20—C19172.46 (17)
C6—C7—C8—C979.8 (2)O18—C19—C20—N1559.9 (3)
C2—C7—C8—C943.6 (2)C9—C8—N21—C2282.1 (2)
N21—C8—C9—C14114.40 (19)C7—C8—N21—C22151.6 (2)
C7—C8—C9—C1413.1 (3)C8—N21—C22—C23157.2 (2)
N21—C8—C9—C1067.5 (2)C8—N21—C22—C2726.6 (3)
C7—C8—C9—C10165.00 (17)C27—C22—C23—C240.7 (3)
C14—C9—C10—C111.6 (3)N21—C22—C23—C24175.8 (2)
C8—C9—C10—C11176.58 (18)C22—C23—C24—C250.7 (4)
C9—C10—C11—C121.6 (3)C23—C24—C25—C260.2 (4)
C10—C11—C12—C132.8 (3)C24—C25—C26—C270.4 (4)
C11—C12—C13—C140.9 (3)C23—C22—C27—C260.1 (3)
C2—O1—C14—C13167.60 (16)N21—C22—C27—C26176.1 (2)
C2—O1—C14—C915.0 (3)C25—C26—C27—C220.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N150.862.442.949 (3)118
C20—H20B···O10.972.352.737 (2)103
C11—H11···O18i0.932.823.458 (3)126
C12—H12···O18ii0.932.833.524 (3)132
C27—H27···CgCiii0.932.873.704 (3)150
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H28N2O2
Mr364.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6452 (7), 10.1247 (8), 11.1168 (9)
α, β, γ (°)81.359 (1), 80.165 (1), 64.920 (1)
V3)965.11 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6035, 4223, 3415
Rint0.014
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.179, 1.02
No. of reflections4223
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990)', SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C141.369 (2)C8—C91.521 (3)
O1—C21.440 (2)C9—C141.393 (3)
C2—N151.479 (2)N15—C201.465 (3)
C2—C71.540 (3)N15—C161.468 (2)
C7—C81.535 (3)C17—O181.414 (3)
C8—N211.439 (3)O18—C191.420 (3)
C20—N15—C16107.9 (2)C16—N15—C2114.3 (1)
C20—N15—C2115.0 (2)
O1—C2—N15—C16171.42 (15)C7—C8—N21—C22151.6 (2)
C3—C2—N15—C1657.0 (2)C8—N21—C22—C2726.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N150.862.442.949 (3)118
C20—H20B···O10.972.352.737 (2)103
C11—H11···O18i0.932.823.458 (3)126
C12—H12···O18ii0.932.833.524 (3)132
C27—H27···CgCiii0.932.873.704 (3)150
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z; (iii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds