Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, catena-poly­[[[dicadmium(II)]-μ-DL-alanine-di-μ-chloro] monohydrate], {[CdCl2(C3H7NO2)]·H2O}n, the DL-alanine mol­ecules exist in the zwitterionic form. The Cd atoms lie on inversion centers and are coordinated by four Cl atoms and two carboxyl O atoms, forming a distorted octahedral environment. These octahedra are linked through Cl—Cl edges and are bridged by the carboxyl groups of the alanine residues, forming a one-dimensional polymer chain that extends along [100].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017720/ci6253sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017720/ci6253Isup2.hkl
Contains datablock I

CCDC reference: 222810

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • H-atom completeness 78%
  • R factor = 0.048
  • wR factor = 0.133
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT052_ALERT_1_A (Proper) Absorption Correction Method Missing ? PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) ..... O3
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .. ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .. ? PLAT057_ALERT_3_C Correction for Absorption Required RT(exp) = 1.14 PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing). ? PLAT431_ALERT_2_C Short Inter HL..A Contact:Cl1 .. O3 = 3.23 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact:Cl2 .. O3 = 3.17 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond list Detected (Rep/Expd) 1.18 Ratio
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C3 H9 Cd1 Cl2 N1 O3 Atom count from the _atom_site data: C3 H7 Cd1 Cl2 N1 O3 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C3 H9 Cd Cl2 N O3 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 12.00 12.00 0.00 H 36.00 28.00 8.00 Cd 4.00 4.00 0.00 Cl 8.00 8.00 0.00 N 4.00 4.00 0.00 O 12.00 12.00 0.00
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Halagenocadmium–amino acid complexes are intersting, as cadmium is a naturally occurring metallic element, chemically similar to zinc. Cadmium is found to occur naturally in at least one protein, metallothionein (Kagi & Vallee, 1960). A precise determination of the crystal structure of DL-alanine itself was recently carried out in our laboratory (Subha Nandhini et al., 2001). The present study reports the crystal struture of a complex of DL-alanine with cadmium chloride, namely catena-poly[[[dicadmium(II)]-µ-DL-alanine-di-µ-chloro] monohydrate], (I). The crystal structures of complexes of cadmium chloride with glycine (Thulasidhass & Mohana Rao, 1980), L-proline (Yukawa et al., 1983) and hydroxy-L-proline (Yukawa et al., 1982), L-alanine (Schaffers & Keszler, 1993), sarcosine (Krishnakumar et al., 1996) and β-alanine (Subha Nandhini et al., 2002) have already been reported.

The DL-alanine molecules exist as zwitterions. The torsion angles involving C1—C2 bond [−3.4 (4), 177.7 (3), −125.2 (3) and 55.9 (4)°; see Table 1] observed in (I) are distinctly different from those observed in DL-alanine [16.3 (2), −164.0 (2), −105.7 (2) and 74.0 (2)°; Subha Nandhini et al., 2001]. The conformation of the alanine molecule about the N—C bond corresponds to the staggered ethane-type.

In the crystal structures of the majority of the complexes, the Cd atom has a tetrahedral coordination (Bürgi, 1973; Liptrot, 1974). In (I), both Cd atoms lie on inversion centers and coordinate with four Cl atoms and two carboxyl O atoms, forming distorted octahedra. The four Cl atoms which coordinate to a Cd atom form a square plane. These square planes extend along the shorter axis, a. The dihedral angle between adjacent square planes is 34.8 (1)°. These square planes are spanned by the carboxyl O atoms, which complete the coordination around the Cd atom. These polyhedra fuse directly by sharing Cl–Cl edges, forming one-dimensional polymeric chains in the [100] direction. The water O atom does not participate in coordination with cadmium. The metal–ligand coordination observed in this structure is remarkably similar to those observed in the crystal structures of complexes of CdCl2 with L-alanine, L-proline, hydroxy L-proline and β-alanine, and distinctly different from glycine–CdCl2 and sarcosine–CdCl2.

Selected interatomic distances are listed in Table 1. The mean Cd—Cl distance, 2.61 (1) Å, is in agreement with the corresponding distances reported in the structures of complexes of CdCl2 with β-alanine [2.619 (5) Å], L-alanine [2.61 (1) Å], L-proline [2.615 (3) Å], 4-hydroxy-L-proline [2.620 (2) Å], glycine [2.543 (6) Å] and sarcosine [2.589 (1) Å]. The Cd—Cl distances also agree well with those observed in other simple organic complexes of CdCl2, viz. 2.60 (1) and 2.65 (1) Å for CdCl2·4H2O (Lelingy & Monier, 1979) and CdCl2 dipyridine (Paulus, 1969), respectively. The Cd—Cl distances reported for CdCl2 diimidazole (Flook et al., 1973), viz. 2.706 (2) and 2.731 (2) Å, are longer compared to those in the present structure.

The crystal structure of (I) is illustrated in Fig. 2 and the hydrogen bonds that stablize it are listed in Table 2. There are no direct interactions between the alanine molecules. The adjacent polymeric chains are interconnected through N—H···O and N—H···Cl hydrogen bonds. The water O3 atom is involved in short contacts with Cl1 [3.234 (3) Å], Cl2i [3.166 (3) Å] and O2ii [3.030 (4) Å] [symmetry codes: (i) x, 1/2 − y, z − 1/2; (ii) 1 + x, y, z].

Experimental top

Colourless single crystals of the title complex were grown as transparent plates, using a mixture of water and acetone, containing DL-alanine and cadmium chloride in a stoichiometric ratio.

Refinement top

H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms, with C—H = 0.97 or 0.98 Å and N—H = 0.89 Å. No satisfactory H-atom positions were found for the water O atom. Hence, the structure was refined without them. The highest peaks in the final difference map were located at distances less than 0.92 Å from the Cd atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999) and ORTEPIII (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An ORTEPIII (Johnson & Burnett, 1996) view of title complex, showing part of the polymeric chain and the atom-numbering scheme for the contents of the asymmetric unit. The displacement ellipsoids are shown at 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell, viewed down the b axis.
catena-poly[[[dicadmium(II)]-µ-DL-alanine-di-µ-chloro] monohydrate] top
Crystal data top
[CdCl2(C3H7NO2)]·H2OF(000) = 560
Mr = 290.42Dx = 2.289 Mg m3
Dm = 2.29 Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and bromoform
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.1190 (15) Åθ = 19–32°
b = 14.408 (3) ŵ = 3.18 mm1
c = 8.6396 (13) ÅT = 293 K
β = 107.98 (2)°Transparent plate, colourless
V = 842.9 (3) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Enraf-Nonius sealed tube
diffractometer
1469 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.095
Graphite monochromatorθmax = 25.3°, θmin = 2.8°
ω–2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.639, Tmax = 0.728l = 910
1797 measured reflections2 standard reflections every 60 min
1541 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.096P)2 + 1.0634P]
where P = (Fo2 + 2Fc2)/3
1541 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 2.57 e Å3
0 restraintsΔρmin = 2.89 e Å3
Crystal data top
[CdCl2(C3H7NO2)]·H2OV = 842.9 (3) Å3
Mr = 290.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1190 (15) ŵ = 3.18 mm1
b = 14.408 (3) ÅT = 293 K
c = 8.6396 (13) Å0.18 × 0.12 × 0.10 mm
β = 107.98 (2)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
1469 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.095
Tmin = 0.639, Tmax = 0.7282 standard reflections every 60 min
1797 measured reflections intensity decay: 0.1%
1541 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.15Δρmax = 2.57 e Å3
1541 reflectionsΔρmin = 2.89 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00001.00000.0067 (3)
Cd21.00000.00001.00000.0088 (3)
Cl10.66360 (12)0.01708 (7)0.76270 (10)0.0129 (3)
Cl20.82562 (11)0.05798 (6)1.20109 (10)0.0154 (3)
O30.6809 (4)0.2414 (2)0.7618 (4)0.0311 (7)
O10.3931 (4)0.14897 (17)0.9765 (3)0.0183 (6)
O20.0712 (4)0.15519 (17)0.9545 (3)0.0198 (6)
N10.4428 (5)0.3237 (2)0.9441 (4)0.0222 (7)
H1A0.48610.29080.87480.033*
H1B0.52060.31371.04520.033*
H1C0.44450.38380.92060.033*
C10.2340 (5)0.1899 (2)0.9571 (4)0.0131 (7)
C20.2358 (5)0.2949 (2)0.9300 (4)0.0155 (7)
H20.15130.30850.81930.019*
C30.1636 (6)0.3507 (3)1.0470 (4)0.0229 (8)
H3A0.16920.41561.02350.034*
H3B0.24560.33851.15620.034*
H3C0.02970.33371.03620.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0062 (4)0.0051 (4)0.0085 (4)0.00054 (10)0.0019 (3)0.00156 (10)
Cd20.0081 (4)0.0095 (4)0.0102 (4)0.00016 (10)0.0048 (3)0.00043 (11)
Cl10.0168 (5)0.0155 (5)0.0059 (5)0.0004 (3)0.0026 (3)0.0003 (3)
Cl20.0135 (5)0.0212 (5)0.0108 (5)0.0029 (3)0.0026 (3)0.0099 (3)
O30.0320 (16)0.0233 (16)0.0347 (16)0.0006 (12)0.0054 (13)0.0129 (12)
O10.0198 (13)0.0076 (11)0.0258 (14)0.0025 (10)0.0043 (11)0.0021 (10)
O20.0179 (13)0.0109 (12)0.0312 (15)0.0024 (10)0.0084 (11)0.0042 (11)
N10.0283 (17)0.0109 (14)0.0268 (18)0.0018 (13)0.0077 (15)0.0037 (13)
C10.0215 (18)0.0128 (17)0.0047 (14)0.0021 (14)0.0033 (11)0.0012 (13)
C20.0221 (17)0.0135 (17)0.0082 (16)0.0004 (13)0.0007 (13)0.0005 (13)
C30.037 (2)0.0177 (18)0.0142 (18)0.0069 (16)0.0087 (16)0.0024 (15)
Geometric parameters (Å, º) top
Cd1—O12.265 (2)O1—C11.241 (4)
Cd1—O1i2.265 (2)O2—C11.256 (4)
Cd1—Cl22.5697 (10)O2—Cd2iv2.352 (3)
Cd1—Cl2i2.5697 (10)N1—C21.500 (5)
Cd1—Cl12.6635 (9)N1—H1A0.89
Cd1—Cl1i2.6635 (9)N1—H1B0.89
Cd2—O2i2.352 (3)N1—H1C0.89
Cd2—O2ii2.352 (3)C1—C21.532 (5)
Cd2—Cl22.5669 (8)C2—C31.501 (5)
Cd2—Cl2iii2.5669 (8)C2—H20.98
Cd2—Cl12.6397 (11)C3—H3A0.96
Cd2—Cl1iii2.6397 (11)C3—H3B0.96
Cl1—Cd2iii2.6397 (11)C3—H3C0.96
Cl2—Cd2iii2.5669 (8)
O1—Cd1—O1i180.0Cl2—Cd2—Cl1iii90.98 (3)
O1—Cd1—Cl287.73 (7)Cl2iii—Cd2—Cl1iii89.02 (3)
O1i—Cd1—Cl292.27 (7)Cl1—Cd2—Cl1iii180.0
O1—Cd1—Cl2i92.27 (7)C1—O1—Cd1136.8 (2)
O1i—Cd1—Cl2i87.73 (7)C1—O2—Cd2iv128.3 (2)
Cl2—Cd1—Cl2i180.0C2—N1—H1A109.5
O1—Cd1—Cl193.33 (7)C2—N1—H1B109.5
O1i—Cd1—Cl186.67 (7)H1A—N1—H1B109.5
Cl2—Cd1—Cl188.44 (3)C2—N1—H1C109.5
Cl2i—Cd1—Cl191.56 (3)H1A—N1—H1C109.5
O1—Cd1—Cl1i86.67 (7)H1B—N1—H1C109.5
O1i—Cd1—Cl1i93.33 (7)O1—C1—O2127.7 (3)
Cl2—Cd1—Cl1i91.56 (3)O1—C1—C2116.1 (3)
Cl2i—Cd1—Cl1i88.44 (3)O2—C1—C2116.2 (3)
Cl1—Cd1—Cl1i180.0N1—C2—C3109.2 (3)
O2i—Cd2—O2ii180.0N1—C2—C1108.4 (3)
O2i—Cd2—Cl291.27 (7)C3—C2—C1113.9 (3)
O2ii—Cd2—Cl288.73 (7)N1—C2—H2108.4
O2i—Cd2—Cl2iii88.73 (7)C3—C2—H2108.4
O2ii—Cd2—Cl2iii91.27 (7)C1—C2—H2108.4
Cl2—Cd2—Cl2iii180.0C2—C3—H3A109.5
O2i—Cd2—Cl191.59 (7)C2—C3—H3B109.5
O2ii—Cd2—Cl188.41 (7)H3A—C3—H3B109.5
Cl2—Cd2—Cl189.02 (3)C2—C3—H3C109.5
Cl2iii—Cd2—Cl190.98 (3)H3A—C3—H3C109.5
O2i—Cd2—Cl1iii88.41 (7)H3B—C3—H3C109.5
O2ii—Cd2—Cl1iii91.59 (7)
O2i—Cd2—Cl1—Cd167.44 (7)O1—Cd1—Cl2—Cd2117.78 (7)
O2ii—Cd2—Cl1—Cd1112.56 (7)O1i—Cd1—Cl2—Cd262.22 (7)
Cl2—Cd2—Cl1—Cd123.80 (2)Cl1—Cd1—Cl2—Cd224.39 (3)
Cl2iii—Cd2—Cl1—Cd1156.20 (2)Cl1i—Cd1—Cl2—Cd2155.61 (3)
O1—Cd1—Cl1—Cd2iii111.42 (7)Cl2—Cd1—O1—C1145.1 (3)
O1i—Cd1—Cl1—Cd2iii68.58 (7)Cl2i—Cd1—O1—C134.9 (3)
Cl2—Cd1—Cl1—Cd223.78 (2)Cl1—Cd1—O1—C1126.6 (3)
Cl2i—Cd1—Cl1—Cd2156.22 (2)Cl1i—Cd1—O1—C153.4 (3)
O2i—Cd2—Cl2—Cd166.96 (7)Cd1—O1—C1—O25.2 (6)
O2ii—Cd2—Cl2—Cd1113.04 (7)Cd1—O1—C1—C2173.6 (2)
Cl1—Cd2—Cl2—Cd124.62 (3)Cd2iv—O2—C1—O13.9 (6)
Cl1iii—Cd2—Cl2—Cd1155.38 (3)Cd2iv—O2—C1—C2177.3 (2)
O1—Cd1—Cl2—Cd2iii117.78 (7)O1—C1—C2—N13.4 (4)
O1i—Cd1—Cl2—Cd2iii62.22 (7)O2—C1—C2—N1177.7 (3)
Cl1—Cd1—Cl2—Cd2iii24.39 (3)O1—C1—C2—C3125.2 (3)
Cl1i—Cd1—Cl2—Cd2iii155.61 (3)O2—C1—C2—C355.9 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x+2, y, z+2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.892.052.900 (5)158
N1—H1B···O3v0.892.032.901 (5)166
N1—H1C···Cl1vi0.892.463.270 (3)152
Symmetry codes: (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C3H7NO2)]·H2O
Mr290.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1190 (15), 14.408 (3), 8.6396 (13)
β (°) 107.98 (2)
V3)842.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.18
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.639, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
1797, 1541, 1469
Rint0.095
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.15
No. of reflections1541
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.57, 2.89

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999) and ORTEPIII (Johnson & Burnett, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—O12.265 (2)Cd2—Cl12.6397 (11)
Cd1—O1i2.265 (2)Cd2—Cl1iii2.6397 (11)
Cd1—Cl22.5697 (10)Cl1—Cd2iii2.6397 (11)
Cd1—Cl2i2.5697 (10)Cl2—Cd2iii2.5669 (8)
Cd1—Cl12.6635 (9)O1—C11.241 (4)
Cd1—Cl1i2.6635 (9)O2—C11.256 (4)
Cd2—O2i2.352 (3)N1—C21.500 (5)
Cd2—O2ii2.352 (3)C1—C21.532 (5)
Cd2—Cl22.5669 (8)C2—C31.501 (5)
Cd2—Cl2iii2.5669 (8)
O1—Cd1—O1i180.0O2i—Cd2—Cl2iii88.73 (7)
O1—Cd1—Cl287.73 (7)O2ii—Cd2—Cl2iii91.27 (7)
O1i—Cd1—Cl292.27 (7)Cl2—Cd2—Cl2iii180.0
O1—Cd1—Cl2i92.27 (7)O2i—Cd2—Cl191.59 (7)
O1i—Cd1—Cl2i87.73 (7)O2ii—Cd2—Cl188.41 (7)
Cl2—Cd1—Cl2i180.0Cl2—Cd2—Cl189.02 (3)
O1—Cd1—Cl193.33 (7)Cl2iii—Cd2—Cl190.98 (3)
O1i—Cd1—Cl186.67 (7)O2i—Cd2—Cl1iii88.41 (7)
Cl2—Cd1—Cl188.44 (3)O2ii—Cd2—Cl1iii91.59 (7)
Cl2i—Cd1—Cl191.56 (3)Cl2—Cd2—Cl1iii90.98 (3)
O1—Cd1—Cl1i86.67 (7)Cl2iii—Cd2—Cl1iii89.02 (3)
O1i—Cd1—Cl1i93.33 (7)Cl1—Cd2—Cl1iii180.0
Cl2—Cd1—Cl1i91.56 (3)O1—C1—O2127.7 (3)
Cl2i—Cd1—Cl1i88.44 (3)O1—C1—C2116.1 (3)
Cl1—Cd1—Cl1i180.0O2—C1—C2116.2 (3)
O2i—Cd2—O2ii180.0N1—C2—C3109.2 (3)
O2i—Cd2—Cl291.27 (7)N1—C2—C1108.4 (3)
O2ii—Cd2—Cl288.73 (7)C3—C2—C1113.9 (3)
O1—C1—C2—N13.4 (4)O1—C1—C2—C3125.2 (3)
O2—C1—C2—N1177.7 (3)O2—C1—C2—C355.9 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.892.052.900 (5)158
N1—H1B···O3iv0.892.032.901 (5)166
N1—H1C···Cl1v0.892.463.270 (3)152
Symmetry codes: (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds