Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Within and between mol­ecules of the title compound, C7H11N2+·C6H3N2O5-, there are N-H...O and C-H...O interactions which generate rings of motifs S(5), D, D12(4), R21(7), R21(5), R12(6), R22(10) and R22(14). The supramolecular aggregation is completed by the presence of C-H...[pi] and [pi]-[pi] interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018178/ci6263sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018178/ci6263Isup2.hkl
Contains datablock I

CCDC reference: 222902

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.067
  • Data-to-parameter ratio = 9.7

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.798 REFNR01_ALERT_3_C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda -0.1862 Proportion of unique data used 1.0000 Ratio reflections to parameters 9.6763 PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.68 PLAT230_ALERT_2_C Hirshfeld Test Diff for O4 - N2 = 5.28 su PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C7 = 2.99 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The design of organic polar crystals for quadratic non-linear optical (NLO) applications is supported by the observation that organic molecules containing π-electron systems asymmetrized by electron-donor and -acceptor groups are highly polarizable entities in which problems of transparency and crystal growth may arise from their molecular crystal packing (Pecaut & Bagieu-Beucher, 1993). It is known that nitrophenols act not only as π-acceptors to form various π-stacking complexes with other aromatic molecules, but also as acidic ligands to form salts through specific electrostatic or hydrogen-bonding interactions (In et al., 1997). The bonding of electron-donor acceptor complexes depends strongly on the nature of the partners. The linkage could involve not only electrostatic interactions, but also the formation of molecular complexes (Zadrenko et al., 1997). It has been reported that proton-transferred thermochromic complexes are formed between phenols and amines in apolar solvents at low temperature if an appropriate hydrogen-bonding network between phenols and amines is present to stabilize it (Mizutani et al., 1998). Pyridinium picrate has been reported in two crystalline phases and it appears in both phases as an internally linked hydrogen-bonded ion pair. These two phases are termed molecular crystals rather than salts, based on their structural arrangements (Botoshansky et al., 1994). A similar structural arrangement has also been reported for 4-dimethylaminopyridinium picrate (Vembu, Nallu, Garrison & Youngs, 2003). The reaction of 4-nitrophenol with 4-dimethylaminopyridine results in the formation of a new NLO material, the crystal structure of which has been reported at room temperature (Evans et al., 1998). Recently, we have reported the crystal structure of 4-dimethylaminopyridinium 4-nitrophenolate 4-nitrophenol (1/1/1) at 120 K (Vembu, Nallu, Spencer & Howard, 2003). The X-ray structure determination of the title compound, (I), has been undertaken to study the nature of the interaction between 4-dimethylaminopyridine and 2,4-dinitrophenol in the solid state. This study may serve as a forerunner for assessing the optical properties of (I).

The asymmetric unit of (I) contains one 4-dimethylaminopyridinium cation and one 2,4-dinitrophenolate anion (Fig. 1). The bond lengths and angles of the phenolate and dimethylaminopyridinium moieties (Table 1) are comparable with those found in related structures reported in the Cambridge Structural Database (Version 5.23; Allen, 2002; Bruno et al., 2002).

The crystal structure of (I) is stabilized by N—H···O and C—H···O interactions. The range of H···O distances (Table 2) found in (I) agrees with those found for N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). As shown in Fig. 2, each of the C3—H3···O3, C3—H3···O4 and C5—H5···O5 interactions generates an S(5) ring motif (Etter, 1990; Bernstein et al., 1995). The S(5) rings generated by the C3—H3···O4 and C5—H5···O5 interactions are planar, whereas that generated by the C3—H3···O3 interaction is distorted from planarity, as atom O3 deviates by −0.284 (5) Å from the mean plane. The C3—H3···O3 and C3—H3···O4 interactions together constitute a pair of bifurcated donor bonds. The C12–H12C···O5 interaction generates a D motif linking the 4-dimethylaminopyridinium and 2,4-dinitrophenolate moieties together. The C13—H13A···O4 and C13—H13A···O5 interactions constitute a pair of bifurcated donor bonds generating a symmetrical three-centred hydrogen-bonded chelate (Desiraju, 1989) motif of graph set D12(4).

As seen from Fig. 3, the C12—H12B···O4i and C10—H10···O4i interactions constitute a pair of bifurcated acceptor bonds generating an R21(7) motif. The C11—H11···O1ii and N3—H3A···O1ii interactions constitute a pair of bifurcated acceptor bonds generating an R21(5) motif. The C7—H7···O2ii and N3—H3A···O2ii interactions constitute another pair of bifurcated acceptor bonds generating an R21(5) motif. The N3—H3A···O1ii and N3—H3A···O2ii interactions constitute a pair of bifurcated donor bonds generating an R1(26) motif. The C7—H7···O2ii and C11—H11···O1ii interactions together generate an R22(10) motif. The C8—H8···O3iii and C13—H13B···O3iii interactions together generate a pair of bifurcated acceptor bonds generating an R21(7) motif. The C12—H12B···O4iv and C11—H11···O3iv interactions together generate an R22(14) motif. There are several other weak C—H···O interactions and a C—H···π interaction, which contribute to the supramolecular aggregation of (I) (Table 2).

In the crystal structure of (I) (Fig. 4), the molecules are stacked in layers held together by pairs of ππ interactions, with a distance of 3.697 (1) Å between the centroids of the pyridinium ring and the benzene ring of the inversion-related 2,4-dinitrophenolate at (1 − x, 1 − y, 1 − z), and a distance of 3.561 (1) Å between the centroids of the benzene rings at (x, y, z) and (1 − x, 2 − y, −z). The interplay of strong N—H···O and weak C—H···O, C—H···π and ππ interactions with different strengths, directional preferences and distance fall of properties presents a complex mosaic of interactions. The three-dimensional arrangement of 2,4-dinitrophenolate and 4-dimethylaminopyridinium moieties in the unit cell shows that (I) is an internally linked hydrogen-bonded ion pair, and hence can be regarded as a molecular crystal rather than a salt.

Experimental top

4-Dimethylaminopyridine (4.9 mmol) in ethanol (25 ml) was added to 2,4-dinitrophenol (4.9 mmol) dissolved in ethanol (25 ml). The precipitate, (I) (3.9 mmol, yield 79%), was filtered and recrystallized from a 1:1 mixture of petroleum ether and acetone.

Refinement top

All H atoms were located from difference Fourier maps and their positional parameters were refined, with Uiso(H) = 1.2Ueq(parent atom). The C—H bond lengths are in the range 0.95 (2)–1.03 (2) Å.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen bonds 1–6 (the numbers correspond to the sequence of entries in Table 2).
[Figure 3] Fig. 3. Hydrogen bonds 7–12 and 14–20 (the numbers correspond to sequence of entries in Table 2). Symmetry codes are as in Table 2.
[Figure 4] Fig. 4. Packing of the molecules in the unit cell of (I), viewed along the a axis, showing the N—H···O, C—H···O, C—H···π and ππ interactions.
4-Dimethylaminopyridinium 2,4-dinitrophenolate top
Crystal data top
C7H11N2+·C6H3N2O5Z = 2
Mr = 306.28F(000) = 320
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Melting point = 432–434 K
a = 7.7246 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1665 (10) ÅCell parameters from 763 reflections
c = 10.8838 (13) Åθ = 2.6–27.0°
α = 96.916 (3)°µ = 0.12 mm1
β = 92.630 (3)°T = 120 K
γ = 101.618 (3)°Block, yellow
V = 665.88 (14) Å30.15 × 0.15 × 0.12 mm
Data collection top
Bruker Proteum M
diffractometer
1444 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
Detector resolution: 8 pixels mm-1h = 98
ω scansk = 99
3781 measured reflectionsl = 1211
2332 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067Only H-atom coordinates refined
S = 0.80 w = 1/[σ2(Fo2) + (0.0204P)2]
where P = (Fo2 + 2Fc2)/3
2332 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H11N2+·C6H3N2O5γ = 101.618 (3)°
Mr = 306.28V = 665.88 (14) Å3
Triclinic, P1Z = 2
a = 7.7246 (9) ÅMo Kα radiation
b = 8.1665 (10) ŵ = 0.12 mm1
c = 10.8838 (13) ÅT = 120 K
α = 96.916 (3)°0.15 × 0.15 × 0.12 mm
β = 92.630 (3)°
Data collection top
Bruker Proteum M
diffractometer
1444 reflections with I > 2σ(I)
3781 measured reflectionsRint = 0.037
2332 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.067Only H-atom coordinates refined
S = 0.80Δρmax = 0.18 e Å3
2332 reflectionsΔρmin = 0.20 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2278 (2)0.8980 (2)0.05184 (18)0.0163 (5)
C20.2907 (2)1.0056 (2)0.06227 (19)0.0163 (5)
C30.3875 (2)0.9562 (2)0.1562 (2)0.0169 (5)
H30.427 (2)1.031 (2)0.2309 (18)0.020*
C40.4256 (2)0.7976 (2)0.14274 (19)0.0168 (5)
C50.3647 (2)0.6838 (2)0.03448 (19)0.0182 (5)
H50.390 (2)0.571 (2)0.0307 (17)0.022*
C60.2715 (3)0.7336 (2)0.0571 (2)0.0195 (5)
H60.234 (2)0.658 (2)0.1317 (18)0.023*
N10.2543 (2)1.17279 (19)0.08717 (17)0.0195 (4)
N20.5283 (2)0.7486 (2)0.24042 (17)0.0223 (4)
O10.14054 (17)0.93398 (15)0.14207 (13)0.0216 (4)
O20.20170 (18)1.23992 (16)0.00035 (13)0.0255 (4)
O30.27575 (18)1.24511 (16)0.19526 (13)0.0281 (4)
O40.57560 (18)0.84841 (17)0.33730 (14)0.0280 (4)
O50.56493 (18)0.60752 (17)0.22452 (13)0.0294 (4)
C71.0031 (2)0.3307 (2)0.7855 (2)0.0188 (5)
H71.062 (2)0.389 (2)0.8654 (18)0.023*
C80.9177 (3)0.4063 (2)0.7045 (2)0.0190 (5)
H80.911 (2)0.523 (2)0.7243 (17)0.023*
C90.8367 (2)0.3143 (2)0.59059 (19)0.0170 (5)
C100.8427 (3)0.1406 (2)0.5708 (2)0.0195 (5)
H100.785 (2)0.068 (2)0.4972 (18)0.023*
C110.9318 (2)0.0739 (3)0.65571 (19)0.0195 (5)
H110.941 (2)0.046 (2)0.6486 (17)0.023*
C120.6621 (3)0.2839 (3)0.3938 (2)0.0262 (5)
H12C0.622 (2)0.363 (2)0.3424 (19)0.031*
H12B0.558 (3)0.199 (2)0.4179 (19)0.031*
H12A0.739 (2)0.223 (2)0.3481 (18)0.031*
C130.7444 (3)0.5630 (3)0.5297 (2)0.0252 (6)
H13A0.689 (2)0.597 (2)0.451 (2)0.030*
H13B0.672 (2)0.581 (2)0.5953 (19)0.030*
H13C0.861 (3)0.641 (2)0.5534 (19)0.030*
N31.0129 (2)0.1677 (2)0.76077 (16)0.0200 (4)
H3A1.071 (3)0.117 (2)0.8151 (19)0.024*
N40.7571 (2)0.38617 (19)0.50494 (15)0.0203 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (11)0.0202 (11)0.0155 (12)0.0024 (9)0.0026 (10)0.0054 (10)
C20.0167 (11)0.0146 (10)0.0183 (13)0.0041 (8)0.0035 (10)0.0028 (9)
C30.0141 (11)0.0195 (11)0.0153 (12)0.0001 (9)0.0032 (10)0.0004 (9)
C40.0147 (11)0.0197 (11)0.0174 (12)0.0040 (9)0.0008 (10)0.0075 (9)
C50.0183 (11)0.0169 (11)0.0209 (13)0.0050 (9)0.0032 (10)0.0052 (10)
C60.0217 (12)0.0166 (11)0.0186 (13)0.0023 (9)0.0004 (10)0.0004 (10)
N10.0183 (9)0.0205 (9)0.0203 (11)0.0053 (7)0.0016 (8)0.0022 (9)
N20.0199 (10)0.0223 (10)0.0258 (12)0.0037 (8)0.0021 (9)0.0084 (9)
O10.0244 (8)0.0209 (7)0.0197 (9)0.0064 (6)0.0049 (7)0.0034 (7)
O20.0344 (9)0.0213 (8)0.0230 (9)0.0106 (6)0.0042 (7)0.0058 (7)
O30.0386 (9)0.0256 (8)0.0193 (9)0.0121 (7)0.0036 (8)0.0071 (7)
O40.0315 (9)0.0317 (8)0.0199 (9)0.0077 (7)0.0057 (7)0.0012 (7)
O50.0343 (9)0.0242 (8)0.0331 (10)0.0123 (7)0.0030 (8)0.0093 (7)
C70.0179 (12)0.0194 (11)0.0179 (12)0.0020 (9)0.0002 (10)0.0016 (10)
C80.0197 (11)0.0176 (11)0.0197 (13)0.0042 (9)0.0024 (10)0.0015 (10)
C90.0145 (11)0.0205 (11)0.0165 (12)0.0034 (9)0.0027 (10)0.0046 (10)
C100.0204 (12)0.0221 (12)0.0159 (13)0.0047 (9)0.0012 (10)0.0011 (10)
C110.0203 (12)0.0217 (11)0.0175 (13)0.0064 (9)0.0046 (10)0.0019 (10)
C120.0326 (14)0.0317 (14)0.0158 (13)0.0129 (11)0.0038 (11)0.0003 (11)
C130.0300 (14)0.0229 (12)0.0251 (15)0.0119 (10)0.0005 (12)0.0030 (11)
N30.0175 (10)0.0236 (10)0.0207 (11)0.0066 (7)0.0000 (8)0.0071 (8)
N40.0262 (10)0.0205 (9)0.0149 (10)0.0076 (8)0.0004 (9)0.0015 (8)
Geometric parameters (Å, º) top
C1—O11.262 (2)C7—H70.983 (18)
C1—C21.435 (3)C8—C91.417 (3)
C1—C61.444 (2)C8—H80.968 (17)
C2—C31.385 (3)C9—N41.347 (2)
C2—N11.445 (2)C9—C101.420 (3)
C3—C41.378 (2)C10—C111.356 (3)
C3—H30.954 (17)C10—H100.968 (17)
C4—C51.408 (3)C11—N31.348 (2)
C4—N21.440 (2)C11—H110.989 (17)
C5—C61.352 (3)C12—N41.459 (3)
C5—H50.977 (17)C12—H12C0.990 (19)
C6—H60.954 (17)C12—H12B1.02 (2)
N1—O31.2393 (19)C12—H12A0.968 (19)
N1—O21.240 (2)C13—N41.461 (3)
N2—O51.2354 (18)C13—H13A1.03 (2)
N2—O41.2438 (19)C13—H13B0.94 (2)
C7—N31.344 (2)C13—H13C0.993 (18)
C7—C81.355 (3)N3—H3A0.913 (19)
O1—C1—C2126.52 (18)C9—C8—H8119.4 (11)
O1—C1—C6119.97 (17)N4—C9—C8122.37 (17)
C2—C1—C6113.51 (17)N4—C9—C10121.13 (18)
C3—C2—C1122.66 (18)C8—C9—C10116.50 (18)
C3—C2—N1115.55 (18)C11—C10—C9119.7 (2)
C1—C2—N1121.79 (17)C11—C10—H10118.9 (10)
C4—C3—C2120.04 (19)C9—C10—H10121.3 (10)
C4—C3—H3119.5 (10)N3—C11—C10121.7 (2)
C2—C3—H3120.4 (10)N3—C11—H11113.9 (10)
C3—C4—C5120.46 (19)C10—C11—H11124.4 (10)
C3—C4—N2119.48 (18)N4—C12—H12C106.5 (11)
C5—C4—N2120.06 (18)N4—C12—H12B109.8 (11)
C6—C5—C4119.05 (19)H12C—C12—H12B111.5 (15)
C6—C5—H5123.3 (10)N4—C12—H12A110.8 (11)
C4—C5—H5117.6 (10)H12C—C12—H12A109.9 (17)
C5—C6—C1124.26 (19)H12B—C12—H12A108.3 (15)
C5—C6—H6118.9 (11)N4—C13—H13A108.9 (11)
C1—C6—H6116.8 (11)N4—C13—H13B111.4 (12)
O3—N1—O2121.66 (16)H13A—C13—H13B107.9 (16)
O3—N1—C2118.94 (17)N4—C13—H13C113.2 (11)
O2—N1—C2119.40 (17)H13A—C13—H13C108.7 (17)
O5—N2—O4122.57 (17)H13B—C13—H13C106.5 (17)
O5—N2—C4118.19 (17)C7—N3—C11120.24 (19)
O4—N2—C4119.24 (17)C7—N3—H3A121.3 (12)
N3—C7—C8121.3 (2)C11—N3—H3A118.4 (12)
N3—C7—H7115.0 (10)C9—N4—C12120.52 (17)
C8—C7—H7123.6 (10)C9—N4—C13120.30 (17)
C7—C8—C9120.33 (19)C12—N4—C13118.69 (17)
C7—C8—H8120.2 (11)
O1—C1—C2—C3179.3 (2)C3—C4—N2—O5177.97 (17)
C6—C1—C2—C31.5 (3)C5—C4—N2—O52.1 (3)
O1—C1—C2—N11.6 (3)C3—C4—N2—O42.5 (3)
C6—C1—C2—N1177.59 (17)C5—C4—N2—O4177.40 (18)
C1—C2—C3—C40.6 (3)N3—C7—C8—C90.2 (3)
N1—C2—C3—C4178.51 (16)C7—C8—C9—N4177.1 (2)
C2—C3—C4—C50.9 (3)C7—C8—C9—C103.2 (3)
C2—C3—C4—N2179.21 (19)N4—C9—C10—C11176.5 (2)
C3—C4—C5—C61.4 (3)C8—C9—C10—C113.8 (3)
N2—C4—C5—C6178.7 (2)C9—C10—C11—N31.4 (3)
C4—C5—C6—C10.4 (3)C8—C7—N3—C112.4 (3)
O1—C1—C6—C5179.8 (2)C10—C11—N3—C71.8 (3)
C2—C1—C6—C51.0 (3)C8—C9—N4—C12174.7 (2)
C3—C2—N1—O315.2 (3)C10—C9—N4—C125.0 (3)
C1—C2—N1—O3163.95 (17)C8—C9—N4—C132.9 (3)
C3—C2—N1—O2165.18 (18)C10—C9—N4—C13176.84 (19)
C1—C2—N1—O215.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.954 (17)2.350 (16)2.665 (2)98.6 (12)
C3—H3···O40.954 (17)2.421 (17)2.728 (3)98.3 (11)
C5—H5···O50.977 (17)2.406 (17)2.732 (2)98.8 (11)
C12—H12C···O50.990 (19)2.60 (2)3.576 (3)170.0 (14)
C13—H13A···O41.03 (2)2.78 (2)3.697 (3)147.9 (14)
C13—H13A···O51.03 (2)2.62 (2)3.628 (3)164.5 (14)
C12—H12C···O3i0.990 (19)2.972 (18)3.541 (3)117.6 (13)
C12—H12B···O4i1.02 (2)2.920 (18)3.457 (3)113.6 (13)
C10—H10···O4i0.968 (17)2.585 (18)3.533 (2)166.3 (15)
C5—H5···O2i0.977 (17)2.772 (17)3.558 (2)137.9 (13)
C11—H11···O1ii0.989 (17)2.731 (17)3.126 (2)104.3 (11)
C7—H7···O2ii0.983 (18)2.369 (17)2.986 (3)120.2 (12)
N3—H3A···O1ii0.913 (19)1.791 (19)2.624 (2)150.4 (17)
N3—H3A···O2ii0.913 (19)2.238 (19)2.865 (2)125.4 (15)
C8—H8···O3iii0.968 (17)2.688 (18)3.555 (2)149.3 (14)
C13—H13B···O3iii0.94 (2)2.51 (2)3.233 (3)133.8 (14)
C12—H12B···O4iv1.02 (2)2.94 (2)3.683 (3)130.3 (13)
C11—H11···O3iv0.989 (17)2.858 (18)3.401 (3)115.3 (13)
C12—H12A···O1v0.968 (19)2.74 (2)3.646 (3)156.1 (15)
C13—H13C···Cg1vi0.993 (18)3.22 (2)3.745 (2)114.4 (14)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H11N2+·C6H3N2O5
Mr306.28
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.7246 (9), 8.1665 (10), 10.8838 (13)
α, β, γ (°)96.916 (3), 92.630 (3), 101.618 (3)
V3)665.88 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.15 × 0.15 × 0.12
Data collection
DiffractometerBruker Proteum M
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3781, 2332, 1444
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.067, 0.80
No. of reflections2332
No. of parameters241
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART-NT (Bruker, 1998), SMART-NT, SAINT-NT (Bruker, 1998), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
C1—O11.262 (2)N2—O41.2438 (19)
C2—N11.445 (2)C7—N31.344 (2)
C4—N21.440 (2)C9—N41.347 (2)
N1—O31.2393 (19)C11—N31.348 (2)
N1—O21.240 (2)C12—N41.459 (3)
N2—O51.2354 (18)C13—N41.461 (3)
O3—N1—O2121.66 (16)O4—N2—C4119.24 (17)
O3—N1—C2118.94 (17)C7—N3—C11120.24 (19)
O2—N1—C2119.40 (17)C9—N4—C12120.52 (17)
O5—N2—O4122.57 (17)C9—N4—C13120.30 (17)
O5—N2—C4118.19 (17)C12—N4—C13118.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.954 (17)2.350 (16)2.665 (2)98.6 (12)
C3—H3···O40.954 (17)2.421 (17)2.728 (3)98.3 (11)
C5—H5···O50.977 (17)2.406 (17)2.732 (2)98.8 (11)
C12—H12C···O50.990 (19)2.60 (2)3.576 (3)170.0 (14)
C13—H13A···O41.03 (2)2.78 (2)3.697 (3)147.9 (14)
C13—H13A···O51.03 (2)2.62 (2)3.628 (3)164.5 (14)
C12—H12C···O3i0.990 (19)2.972 (18)3.541 (3)117.6 (13)
C12—H12B···O4i1.02 (2)2.920 (18)3.457 (3)113.6 (13)
C10—H10···O4i0.968 (17)2.585 (18)3.533 (2)166.3 (15)
C5—H5···O2i0.977 (17)2.772 (17)3.558 (2)137.9 (13)
C11—H11···O1ii0.989 (17)2.731 (17)3.126 (2)104.3 (11)
C7—H7···O2ii0.983 (18)2.369 (17)2.986 (3)120.2 (12)
N3—H3A···O1ii0.913 (19)1.791 (19)2.624 (2)150.4 (17)
N3—H3A···O2ii0.913 (19)2.238 (19)2.865 (2)125.4 (15)
C8—H8···O3iii0.968 (17)2.688 (18)3.555 (2)149.3 (14)
C13—H13B···O3iii0.94 (2)2.51 (2)3.233 (3)133.8 (14)
C12—H12B···O4iv1.02 (2)2.94 (2)3.683 (3)130.3 (13)
C11—H11···O3iv0.989 (17)2.858 (18)3.401 (3)115.3 (13)
C12—H12A···O1v0.968 (19)2.74 (2)3.646 (3)156.1 (15)
C13—H13C···Cg1vi0.993 (18)3.22 (2)3.745 (2)114.4 (14)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds