Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C16H12O2, contains two independent mol­ecules in the asymmetric unit. In both mol­ecules, the benzo­quinone system is essentially planar and the cyclo­butene ring is coplanar with it; the cyclo­propyl planes are orthogonal to the cyclo­butene ring. The crystal packing is stabilized by C—H...O interactions as well as van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803022992/ci6289sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803022992/ci6289Isup2.hkl
Contains datablock I

CCDC reference: 226991

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.100
  • Data-to-parameter ratio = 9.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for C3B - C4B = 9.74 su
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.99 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.70 mm PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT320_ALERT_2_C Check Hybridisation of C10B in Main Residue . ? PLAT333_ALERT_2_C Large Av Benzene C-C Dist. C1A - C12A = 1.45 Ang. PLAT335_ALERT_2_C Large Benzene C-C Range C1B - C12B = 0.17 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.28 From the CIF: _reflns_number_total 3147 Count of symmetry unique reflns 3168 Completeness (_total/calc) 99.34% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Dispiro[cyclopropane-1,1'(2'H)-cyclobuta[b]naphthalene-2',1''-cyclopropane] -3',8'-dione top
Crystal data top
C16H12O2F(000) = 496
Mr = 236.26Dx = 1.309 Mg m3
Monoclinic, P21Melting point: 377-376 K K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.7281 (5) ÅCell parameters from 4723 reflections
b = 8.2720 (4) Åθ = 2.4–28.2°
c = 16.9772 (9) ŵ = 0.09 mm1
β = 102.0473 (9)°T = 293 K
V = 1198.74 (11) Å3Block, yellow
Z = 40.70 × 0.34 × 0.24 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3147 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 810
Tmin = 0.943, Tmax = 0.980l = 2218
7540 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1341P]
where P = (Fo2 + 2Fc2)/3
3147 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.4316 (2)0.9273 (2)0.04930 (8)0.0556 (4)
O2A0.69988 (19)0.9227 (3)0.36950 (8)0.0618 (5)
C1A0.6100 (2)1.0530 (3)0.15811 (11)0.0422 (4)
C2A0.6529 (3)1.1716 (3)0.10926 (14)0.0524 (5)
H2A0.60931.17150.05440.063*
C3A0.7598 (3)1.2900 (3)0.14117 (17)0.0637 (6)
H3A0.78911.36780.10760.076*
C4A0.8234 (3)1.2930 (3)0.22332 (18)0.0661 (7)
H4A0.89371.37400.24470.079*
C5A0.7828 (3)1.1761 (3)0.27331 (14)0.0543 (6)
H5A0.82641.17850.32820.065*
C6A0.6770 (2)1.0544 (3)0.24214 (12)0.0438 (4)
C7A0.6422 (2)0.9249 (3)0.29724 (11)0.0447 (5)
C8A0.5375 (2)0.7986 (3)0.25666 (11)0.0424 (4)
C9A0.4657 (2)0.6423 (3)0.27142 (11)0.0437 (4)
C10A0.3963 (2)0.6374 (3)0.18020 (11)0.0408 (4)
C11A0.4740 (2)0.7969 (3)0.17626 (11)0.0401 (4)
C12A0.4971 (2)0.9243 (3)0.12045 (11)0.0412 (4)
C13A0.2399 (2)0.5771 (3)0.13621 (13)0.0500 (5)
H13A0.18300.64220.09220.060*
H13B0.17480.52080.16720.060*
C14A0.3866 (3)0.4948 (3)0.12468 (13)0.0485 (5)
H14A0.41830.51040.07370.058*
H14B0.41010.38890.14870.058*
C15A0.3892 (3)0.5975 (4)0.33999 (14)0.0591 (6)
H15A0.28880.54280.32710.071*
H15B0.40240.67060.38560.071*
C16A0.5312 (3)0.5067 (3)0.32665 (13)0.0572 (6)
H16A0.62960.52500.36430.069*
H16B0.51600.39730.30590.069*
O1B0.0766 (2)0.6523 (2)0.31542 (10)0.0602 (4)
O2B0.2452 (3)1.1503 (3)0.21864 (12)0.0793 (6)
C1B0.0311 (2)0.8134 (3)0.20593 (11)0.0450 (5)
C2B0.1380 (3)0.7243 (3)0.14923 (14)0.0567 (6)
H2B0.19700.64310.16650.068*
C3B0.1562 (3)0.7562 (4)0.06804 (16)0.0723 (9)
H3B0.22750.69750.03040.087*
C4B0.0672 (4)0.8763 (5)0.04343 (13)0.0824 (11)
H4B0.07730.89570.01140.099*
C5B0.0371 (4)0.9691 (4)0.09813 (14)0.0702 (8)
H5B0.09441.05080.08010.084*
C6B0.0555 (3)0.9387 (3)0.18075 (12)0.0503 (5)
C7B0.1677 (3)1.0429 (3)0.23977 (14)0.0519 (5)
C8B0.1719 (2)1.0013 (2)0.32377 (12)0.0422 (4)
C9B0.2512 (2)1.0433 (3)0.40827 (12)0.0423 (4)
C10B0.1562 (2)0.9059 (3)0.43496 (10)0.0380 (4)
C11B0.0899 (2)0.8799 (2)0.34740 (10)0.0371 (4)
C12B0.0131 (2)0.7701 (3)0.29325 (11)0.0404 (4)
C13B0.2040 (3)0.7829 (3)0.50079 (12)0.0492 (5)
H13C0.30360.79840.53790.059*
H13D0.17540.67100.48850.059*
C14B0.0744 (2)0.9009 (3)0.50456 (12)0.0496 (5)
H14C0.03200.85990.49450.060*
H14D0.09610.98730.54400.060*
C15B0.4208 (3)1.0856 (4)0.43899 (16)0.0627 (7)
H15C0.47601.03170.48740.075*
H15D0.48401.10830.39960.075*
C16B0.2955 (3)1.2051 (3)0.44722 (17)0.0599 (6)
H16C0.28321.29980.41270.072*
H16D0.27531.22310.50060.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0726 (10)0.0553 (9)0.0327 (6)0.0043 (8)0.0031 (6)0.0021 (7)
O2A0.0669 (10)0.0743 (12)0.0363 (7)0.0117 (9)0.0070 (6)0.0110 (8)
C1A0.0455 (9)0.0392 (10)0.0403 (9)0.0103 (8)0.0050 (7)0.0076 (8)
C2A0.0645 (13)0.0424 (12)0.0498 (11)0.0052 (10)0.0105 (10)0.0072 (10)
C3A0.0760 (16)0.0433 (12)0.0742 (16)0.0045 (12)0.0212 (13)0.0089 (12)
C4A0.0626 (14)0.0467 (13)0.0867 (19)0.0043 (11)0.0098 (13)0.0242 (14)
C5A0.0501 (11)0.0527 (13)0.0558 (12)0.0085 (11)0.0009 (9)0.0224 (11)
C6A0.0418 (9)0.0445 (11)0.0435 (10)0.0108 (9)0.0049 (8)0.0134 (9)
C7A0.0415 (9)0.0551 (12)0.0346 (8)0.0152 (9)0.0013 (7)0.0090 (9)
C8A0.0423 (9)0.0503 (11)0.0328 (8)0.0122 (9)0.0040 (7)0.0014 (8)
C9A0.0441 (10)0.0524 (11)0.0339 (8)0.0142 (9)0.0061 (7)0.0044 (9)
C10A0.0416 (9)0.0445 (10)0.0346 (9)0.0088 (8)0.0040 (7)0.0023 (8)
C11A0.0418 (9)0.0434 (10)0.0327 (8)0.0078 (8)0.0021 (7)0.0016 (8)
C12A0.0476 (10)0.0403 (10)0.0340 (8)0.0079 (9)0.0049 (7)0.0024 (8)
C13A0.0448 (10)0.0493 (12)0.0510 (11)0.0056 (9)0.0013 (8)0.0030 (10)
C14A0.0570 (12)0.0430 (11)0.0445 (10)0.0078 (9)0.0082 (9)0.0002 (9)
C15A0.0616 (13)0.0730 (17)0.0458 (11)0.0186 (12)0.0186 (10)0.0134 (11)
C16A0.0653 (14)0.0605 (14)0.0449 (11)0.0215 (12)0.0093 (10)0.0144 (11)
O1B0.0685 (10)0.0578 (10)0.0544 (9)0.0237 (9)0.0130 (7)0.0143 (8)
O2B0.1065 (15)0.0608 (12)0.0802 (13)0.0141 (12)0.0411 (11)0.0120 (11)
C1B0.0454 (10)0.0484 (11)0.0378 (9)0.0180 (9)0.0012 (8)0.0079 (8)
C2B0.0513 (12)0.0619 (14)0.0497 (11)0.0230 (11)0.0056 (9)0.0187 (11)
C3B0.0782 (17)0.082 (2)0.0456 (12)0.0396 (17)0.0130 (11)0.0165 (13)
C4B0.115 (2)0.092 (2)0.0315 (10)0.061 (2)0.0038 (12)0.0004 (13)
C5B0.102 (2)0.0625 (16)0.0483 (13)0.0354 (16)0.0208 (13)0.0129 (12)
C6B0.0631 (12)0.0484 (12)0.0384 (9)0.0229 (10)0.0083 (9)0.0024 (9)
C7B0.0625 (13)0.0450 (12)0.0520 (12)0.0087 (10)0.0208 (10)0.0080 (10)
C8B0.0442 (10)0.0372 (10)0.0452 (10)0.0020 (8)0.0091 (8)0.0021 (8)
C9B0.0366 (9)0.0421 (10)0.0480 (10)0.0031 (8)0.0077 (7)0.0073 (9)
C10B0.0348 (8)0.0404 (10)0.0364 (8)0.0008 (8)0.0021 (6)0.0040 (8)
C11B0.0344 (8)0.0386 (10)0.0363 (8)0.0022 (7)0.0029 (7)0.0018 (7)
C12B0.0355 (8)0.0436 (11)0.0406 (9)0.0038 (8)0.0045 (7)0.0087 (8)
C13B0.0578 (12)0.0477 (12)0.0386 (10)0.0028 (10)0.0017 (8)0.0002 (9)
C14B0.0469 (10)0.0599 (13)0.0425 (9)0.0029 (10)0.0103 (8)0.0067 (10)
C15B0.0405 (10)0.0726 (17)0.0767 (16)0.0158 (11)0.0158 (10)0.0321 (14)
C16B0.0628 (14)0.0474 (13)0.0736 (15)0.0132 (11)0.0236 (12)0.0192 (12)
Geometric parameters (Å, º) top
O1A—C12A1.224 (2)O1B—C12B1.219 (3)
O2A—C7A1.225 (2)O2B—C7B1.215 (3)
C1A—C2A1.385 (3)C1B—C6B1.401 (3)
C1A—C6A1.424 (3)C1B—C2B1.402 (3)
C1A—C12A1.500 (3)C1B—C12B1.501 (3)
C2A—C3A1.383 (3)C2B—C3B1.380 (4)
C2A—H2A0.93C2B—H2B0.93
C3A—C4A1.390 (4)C3B—C4B1.379 (5)
C3A—H3A0.93C3B—H3B0.93
C4A—C5A1.381 (4)C4B—C5B1.388 (5)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.394 (3)C5B—C6B1.401 (3)
C5A—H5A0.93C5B—H5B0.93
C6A—C7A1.494 (3)C6B—C7B1.516 (4)
C7A—C8A1.463 (3)C7B—C8B1.460 (3)
C8A—C11A1.362 (2)C8B—C11B1.343 (3)
C8A—C9A1.480 (3)C8B—C9B1.498 (3)
C9A—C16A1.497 (3)C9B—C15B1.505 (3)
C9A—C15A1.504 (3)C9B—C16B1.508 (3)
C9A—C10A1.541 (3)C9B—C10B1.531 (3)
C10A—C11A1.491 (3)C10B—C11B1.494 (2)
C10A—C13A1.498 (3)C10B—C14B1.503 (3)
C10A—C14A1.501 (3)C10B—C13B1.504 (3)
C11A—C12A1.459 (3)C11B—C12B1.460 (3)
C13A—C14A1.499 (3)C13B—C14B1.506 (3)
C13A—H13A0.97C13B—H13C0.9700
C13A—H13B0.97C13B—H13D0.97
C14A—H14A0.97C14B—H14C0.97
C14A—H14B0.97C14B—H14D0.97
C15A—C16A1.506 (3)C15B—C16B1.503 (4)
C15A—H15A0.97C15B—H15C0.97
C15A—H15B0.97C15B—H15D0.97
C16A—H16A0.97C16B—H16C0.97
C16A—H16B0.97C16B—H16D0.97
C2A—C1A—C6A119.2 (2)C6B—C1B—C2B120.2 (2)
C2A—C1A—C12A118.87 (18)C6B—C1B—C12B121.71 (18)
C6A—C1A—C12A121.88 (19)C2B—C1B—C12B118.1 (2)
C3A—C2A—C1A120.8 (2)C3B—C2B—C1B120.5 (3)
C3A—C2A—H2A119.6C3B—C2B—H2B119.8
C1A—C2A—H2A119.6C1B—C2B—H2B119.8
C2A—C3A—C4A120.1 (3)C4B—C3B—C2B119.1 (3)
C2A—C3A—H3A120.0C4B—C3B—H3B120.5
C4A—C3A—H3A120.0C2B—C3B—H3B120.5
C5A—C4A—C3A120.3 (2)C3B—C4B—C5B121.9 (2)
C5A—C4A—H4A119.8C3B—C4B—H4B119.1
C3A—C4A—H4A119.8C5B—C4B—H4B119.1
C4A—C5A—C6A120.5 (2)C4B—C5B—C6B119.5 (3)
C4A—C5A—H5A119.8C4B—C5B—H5B120.2
C6A—C5A—H5A119.8C6B—C5B—H5B120.2
C5A—C6A—C1A119.1 (2)C5B—C6B—C1B118.8 (2)
C5A—C6A—C7A119.02 (19)C5B—C6B—C7B118.9 (2)
C1A—C6A—C7A121.79 (19)C1B—C6B—C7B122.30 (17)
O2A—C7A—C8A123.1 (2)O2B—C7B—C8B124.0 (2)
O2A—C7A—C6A122.9 (2)O2B—C7B—C6B122.9 (2)
C8A—C7A—C6A113.95 (16)C8B—C7B—C6B113.1 (2)
C11A—C8A—C7A124.2 (2)C11B—C8B—C7B124.19 (19)
C11A—C8A—C9A93.61 (17)C11B—C8B—C9B93.20 (16)
C7A—C8A—C9A142.10 (18)C7B—C8B—C9B142.5 (2)
C8A—C9A—C16A129.82 (19)C8B—C9B—C15B127.62 (18)
C8A—C9A—C15A128.2 (2)C8B—C9B—C16B130.6 (2)
C16A—C9A—C15A60.24 (15)C15B—C9B—C16B59.85 (16)
C8A—C9A—C10A86.81 (15)C8B—C9B—C10B86.61 (14)
C16A—C9A—C10A128.9 (2)C15B—C9B—C10B128.7 (2)
C15A—C9A—C10A128.81 (19)C16B—C9B—C10B129.42 (18)
C11A—C10A—C13A130.37 (18)C11B—C10B—C14B129.01 (16)
C11A—C10A—C14A129.32 (17)C11B—C10B—C13B129.18 (18)
C13A—C10A—C14A59.96 (15)C14B—C10B—C13B60.08 (15)
C11A—C10A—C9A86.26 (16)C11B—C10B—C9B86.20 (14)
C13A—C10A—C9A129.47 (18)C14B—C10B—C9B128.94 (18)
C14A—C10A—C9A127.62 (18)C13B—C10B—C9B129.68 (16)
C8A—C11A—C12A124.1 (2)C8B—C11B—C12B124.99 (17)
C8A—C11A—C10A93.29 (17)C8B—C11B—C10B93.99 (16)
C12A—C11A—C10A142.55 (17)C12B—C11B—C10B140.88 (18)
O1A—C12A—C11A123.8 (2)O1B—C12B—C11B124.22 (18)
O1A—C12A—C1A122.39 (19)O1B—C12B—C1B122.32 (19)
C11A—C12A—C1A113.79 (16)C11B—C12B—C1B113.44 (18)
C10A—C13A—C14A60.13 (14)C10B—C13B—C14B59.93 (14)
C10A—C13A—H13A117.8C10B—C13B—H13C117.8
C14A—C13A—H13A117.8C14B—C13B—H13C117.8
C10A—C13A—H13B117.8C10B—C13B—H13D117.8
C14A—C13A—H13B117.8C14B—C13B—H13D117.8
H13A—C13A—H13B114.9H13C—C13B—H13D114.9
C13A—C14A—C10A59.91 (14)C10B—C14B—C13B59.99 (13)
C13A—C14A—H14A117.8C10B—C14B—H14C117.8
C10A—C14A—H14A117.8C13B—C14B—H14C117.8
C13A—C14A—H14B117.8C10B—C14B—H14D117.8
C10A—C14A—H14B117.8C13B—C14B—H14D117.8
H14A—C14A—H14B114.9H14C—C14B—H14D114.9
C9A—C15A—C16A59.66 (14)C16B—C15B—C9B60.18 (15)
C9A—C15A—H15A117.8C16B—C15B—H15C117.8
C16A—C15A—H15A117.8C9B—C15B—H15C117.8
C9A—C15A—H15B117.8C16B—C15B—H15D117.8
C16A—C15A—H15B117.8C9B—C15B—H15D117.8
H15A—C15A—H15B114.9H15C—C15B—H15D114.9
C9A—C16A—C15A60.10 (14)C15B—C16B—C9B59.97 (15)
C9A—C16A—H16A117.8C15B—C16B—H16C117.8
C15A—C16A—H16A117.8C9B—C16B—H16C117.8
C9A—C16A—H16B117.8C15B—C16B—H16D117.8
C15A—C16A—H16B117.8C9B—C16B—H16D117.8
H16A—C16A—H16B114.9H16C—C16B—H16D114.9
C6A—C1A—C2A—C3A0.2 (3)C6B—C1B—C2B—C3B1.7 (3)
C12A—C1A—C2A—C3A178.2 (2)C12B—C1B—C2B—C3B178.31 (19)
C1A—C2A—C3A—C4A1.2 (4)C1B—C2B—C3B—C4B0.3 (3)
C2A—C3A—C4A—C5A1.3 (4)C2B—C3B—C4B—C5B1.8 (4)
C3A—C4A—C5A—C6A0.4 (4)C3B—C4B—C5B—C6B1.2 (4)
C4A—C5A—C6A—C1A0.6 (3)C4B—C5B—C6B—C1B0.8 (3)
C4A—C5A—C6A—C7A176.8 (2)C4B—C5B—C6B—C7B179.0 (2)
C2A—C1A—C6A—C5A0.7 (3)C2B—C1B—C6B—C5B2.2 (3)
C12A—C1A—C6A—C5A179.10 (18)C12B—C1B—C6B—C5B177.8 (2)
C2A—C1A—C6A—C7A176.64 (18)C2B—C1B—C6B—C7B177.5 (2)
C12A—C1A—C6A—C7A1.7 (3)C12B—C1B—C6B—C7B2.5 (3)
C5A—C6A—C7A—O2A1.8 (3)C5B—C6B—C7B—O2B1.4 (3)
C1A—C6A—C7A—O2A179.17 (19)C1B—C6B—C7B—O2B178.8 (2)
C5A—C6A—C7A—C8A176.25 (18)C5B—C6B—C7B—C8B178.3 (2)
C1A—C6A—C7A—C8A1.1 (3)C1B—C6B—C7B—C8B1.5 (3)
O2A—C7A—C8A—C11A178.86 (19)O2B—C7B—C8B—C11B178.0 (2)
C6A—C7A—C8A—C11A0.8 (3)C6B—C7B—C8B—C11B2.2 (3)
O2A—C7A—C8A—C9A2.2 (4)O2B—C7B—C8B—C9B2.9 (4)
C6A—C7A—C8A—C9A175.8 (2)C6B—C7B—C8B—C9B177.3 (2)
C11A—C8A—C9A—C16A141.8 (2)C11B—C8B—C9B—C15B137.6 (2)
C7A—C8A—C9A—C16A35.4 (4)C7B—C8B—C9B—C15B38.3 (4)
C11A—C8A—C9A—C15A137.8 (2)C11B—C8B—C9B—C16B142.5 (2)
C7A—C8A—C9A—C15A45.0 (4)C7B—C8B—C9B—C16B41.6 (4)
C11A—C8A—C9A—C10A1.20 (15)C11B—C8B—C9B—C10B0.55 (15)
C7A—C8A—C9A—C10A176.0 (3)C7B—C8B—C9B—C10B176.5 (3)
C8A—C9A—C10A—C11A1.09 (13)C8B—C9B—C10B—C11B0.50 (13)
C16A—C9A—C10A—C11A142.3 (2)C15B—C9B—C10B—C11B136.9 (2)
C15A—C9A—C10A—C11A137.5 (2)C16B—C9B—C10B—C11B143.2 (2)
C8A—C9A—C10A—C13A143.0 (2)C8B—C9B—C10B—C14B138.7 (2)
C16A—C9A—C10A—C13A75.8 (3)C15B—C9B—C10B—C14B83.9 (3)
C15A—C9A—C10A—C13A4.5 (4)C16B—C9B—C10B—C14B3.9 (3)
C8A—C9A—C10A—C14A137.6 (2)C8B—C9B—C10B—C13B140.6 (2)
C16A—C9A—C10A—C14A3.6 (3)C15B—C9B—C10B—C13B3.2 (3)
C15A—C9A—C10A—C14A83.8 (3)C16B—C9B—C10B—C13B76.7 (3)
C7A—C8A—C11A—C12A2.5 (3)C7B—C8B—C11B—C12B1.1 (3)
C9A—C8A—C11A—C12A179.54 (18)C9B—C8B—C11B—C12B175.90 (18)
C7A—C8A—C11A—C10A176.69 (18)C7B—C8B—C11B—C10B177.6 (2)
C9A—C8A—C11A—C10A1.24 (15)C9B—C8B—C11B—C10B0.57 (15)
C13A—C10A—C11A—C8A142.5 (2)C14B—C10B—C11B—C8B138.6 (2)
C14A—C10A—C11A—C8A136.3 (2)C13B—C10B—C11B—C8B141.0 (2)
C9A—C10A—C11A—C8A1.19 (14)C9B—C10B—C11B—C8B0.56 (15)
C13A—C10A—C11A—C12A38.6 (4)C14B—C10B—C11B—C12B46.0 (4)
C14A—C10A—C11A—C12A42.6 (4)C13B—C10B—C11B—C12B34.4 (4)
C9A—C10A—C11A—C12A179.9 (3)C9B—C10B—C11B—C12B174.9 (2)
C8A—C11A—C12A—O1A175.0 (2)C8B—C11B—C12B—O1B173.6 (2)
C10A—C11A—C12A—O1A6.2 (4)C10B—C11B—C12B—O1B0.8 (4)
C8A—C11A—C12A—C1A5.1 (3)C8B—C11B—C12B—C1B4.9 (3)
C10A—C11A—C12A—C1A173.6 (2)C10B—C11B—C12B—C1B179.3 (2)
C2A—C1A—C12A—O1A6.1 (3)C6B—C1B—C12B—O1B173.1 (2)
C6A—C1A—C12A—O1A175.48 (19)C2B—C1B—C12B—O1B6.9 (3)
C2A—C1A—C12A—C11A173.75 (18)C6B—C1B—C12B—C11B5.4 (3)
C6A—C1A—C12A—C11A4.6 (3)C2B—C1B—C12B—C11B174.57 (17)
C11A—C10A—C13A—C14A118.0 (2)C11B—C10B—C13B—C14B117.9 (2)
C9A—C10A—C13A—C14A115.9 (3)C9B—C10B—C13B—C14B117.7 (2)
C11A—C10A—C14A—C13A119.6 (2)C11B—C10B—C14B—C13B118.2 (2)
C9A—C10A—C14A—C13A118.8 (2)C9B—C10B—C14B—C13B118.8 (2)
C8A—C9A—C15A—C16A119.3 (2)C8B—C9B—C15B—C16B120.2 (3)
C10A—C9A—C15A—C16A118.0 (3)C10B—C9B—C15B—C16B118.4 (2)
C8A—C9A—C16A—C15A116.8 (3)C8B—C9B—C16B—C15B115.6 (3)
C10A—C9A—C16A—C15A117.8 (3)C10B—C9B—C16B—C15B117.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···O1Bi0.932.583.387 (3)145
C15B—H15D···O2A0.972.563.216 (3)125
Symmetry code: (i) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds