Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, CoHg(SeCN)4, was obtained by self-assembly. X-ray crystal structure analysis reveals that it has an extended three-dimensional network structure in which the slightly distorted CoN4 and HgSe4 tetra­hedra are connected by -SeCN- bridges. The Hg and Co atoms lie on positions of \overline 4 symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806004259/ci6759sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806004259/ci6759Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 213 K
  • Mean [sigma](N-C) = 0.019 Å
  • R factor = 0.041
  • wR factor = 0.103
  • Data-to-parameter ratio = 17.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT040_ALERT_1_C No H-atoms in this Carbon Containing Compound .. ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.98 From the CIF: _reflns_number_total 566 Count of symmetry unique reflns 323 Completeness (_total/calc) 175.23% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 243 Fraction of Friedel pairs measured 0.752 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Cobalt mercury tetraselenocyanate top
Crystal data top
CoHg(SeCN)4Dx = 3.838 Mg m3
Mr = 679.44Melting point: 500.6 K
Tetragonal, I4Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I -4Cell parameters from 1547 reflections
a = 11.281 (3) Åθ = 3.6–26.0°
c = 4.6207 (12) ŵ = 26.79 mm1
V = 588.0 (3) Å3T = 213 K
Z = 2Block, dark red
F(000) = 5900.40 × 0.16 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
566 independent reflections
Radiation source: fine-focus sealed tube545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 913
Absorption correction: numerical
(SMART; Siemens, 1996)
k = 1313
Tmin = 0.009, Tmax = 0.040l = 55
1547 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0465P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.001
wR(F2) = 0.103Δρmax = 1.57 e Å3
S = 1.10Δρmin = 1.87 e Å3
566 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 parametersExtinction coefficient: 0.0093 (13)
0 restraintsAbsolute structure: Flack (1983); 245 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Special details top

Experimental. Absorption correction was performed using face-indexing techniques.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00000.00000.00000.0221 (4)
Se10.12363 (12)0.15290 (11)0.3183 (3)0.0229 (4)
Co10.00000.50000.25000.0216 (9)
N10.0487 (10)0.3636 (8)0.013 (4)0.025 (2)
C10.0770 (11)0.2837 (13)0.117 (3)0.025 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0166 (4)0.0166 (4)0.0330 (6)0.0000.0000.000
Se10.0214 (7)0.0161 (7)0.0311 (9)0.0017 (5)0.0047 (5)0.0001 (5)
Co10.0146 (11)0.0146 (11)0.036 (2)0.0000.0000.000
N10.025 (5)0.012 (5)0.039 (6)0.000 (4)0.001 (7)0.000 (6)
C10.011 (6)0.027 (7)0.038 (8)0.004 (5)0.002 (5)0.007 (6)
Geometric parameters (Å, º) top
Hg1—Se12.6615 (14)Co1—N1iv1.967 (13)
Hg1—Se1i2.6615 (14)Co1—N1v1.967 (13)
Hg1—Se1ii2.6615 (14)Co1—N1vi1.967 (13)
Hg1—Se1iii2.6615 (14)Co1—N11.967 (13)
Se1—C11.822 (15)N1—C11.13 (2)
Se1—Hg1—Se1i107.78 (3)N1iv—Co1—N1vi112.4 (9)
Se1—Hg1—Se1ii112.91 (6)N1v—Co1—N1vi108.0 (4)
Se1i—Hg1—Se1ii107.78 (3)N1iv—Co1—N1108.0 (4)
Se1—Hg1—Se1iii107.78 (3)N1v—Co1—N1112.4 (9)
Se1i—Hg1—Se1iii112.91 (6)N1vi—Co1—N1108.0 (4)
Se1ii—Hg1—Se1iii107.78 (3)C1—N1—Co1178.4 (15)
C1—Se1—Hg195.3 (4)N1—C1—Se1178.5 (14)
N1iv—Co1—N1v108.0 (4)
Se1i—Hg1—Se1—C1108.6 (4)Se1iii—Hg1—Se1—C113.6 (4)
Se1ii—Hg1—Se1—C1132.5 (4)
Symmetry codes: (i) y, x, z; (ii) x, y, z; (iii) y, x, z; (iv) y1/2, x1/2, z+1/2; (v) x, y1, z; (vi) y+1/2, x1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds