Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of natural fresnoite, Ba2TiSi2O8, from the sanbornite deposits of eastern Fresno County, California, has been solved and refined as an incommensurate structure in five-dimensional superspace. The structure is tetragonal, superspace group P4bm\left({\alpha, \alpha, 1/2} \right)\left({ - \alpha, \alpha, 1/2} \right)0gg, cell parameters a = 8.5353 (6), c = 10.4128 (7) Å, modulation vectors {\bf q}_1 = 0.3020\,\left(3 \right)\,\left({{\bf a}^* + {\bf b}^* } \right), {\bf q}_2 = 0.3020\,\left(3 \right)\,\left({ - {\bf a}^* + {\bf b}^* } \right). Data collection was performed on an Xcalibur CCD diffractometer at 110 K. The structure was refined from 3452 reflections to final R = 0.0123. The model includes modulation of both atomic positions and displacement parameters. As a consequence of the Ba and O positional modulation, eight-, nine- and tenfold Ba coordinations occur throughout the structure. The change of coordination around the Ba atom is clearly represented by the deformation of the pentagonal rings, as seen from a projection along [001]. The deformed pentagonal rings correspond to Ba atoms with eight- and ninefold coordinations and form octagonal clusters closely resembling those observed in the incommensurate structure of melilite-type compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106030059/ck5019sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106030059/ck5019sup2.hkl
Supplementary material

Computing details top

Data collection: CrysAlis PRO CCD (Oxford diffraction, 2005); cell refinement: CrysAlis PRO RED (Oxford diffraction, 2005); data reduction: CrysAlis PRO RED (Oxford diffraction, 2005); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: (Jana2000; Petricek, Dusek and Palatinus, 2000); software used to prepare material for publication: (Jana2000; Petricek, Dusek and Palatinus, 2000).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(I) top
Crystal data top
Ba2O8Si2TiDx = 4.435 Mg m3
Mr = 506.7Mo Kα radiation, λ = 0.71069 Å
Tetragonal, X4bmCell parameters from 20966 reflections
q1 = 0.30200a* + 0.30200b*; q2 = -0.30200a* + 0.30200b*θ = 3.2–36.2°
a = 8.5353 ŵ = 11.67 mm1
c = 10.4128 ÅT = 110 K
V = 758.59 Å3Irregular, yellow
Z = 40.09 × 0.06 × 0.03 mm
F(000) = 904
† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x2, x1, x3, −x5, x4; (3) 1/2−x1, 1/2+x2, x3, 1/2+x5, 1/2+x4; (4) −x1, −x2, x3, −x4, −x5; (5) 1/2−x2, 1/2−x1, x3, 1/2−x4, 1/2+x5; (6) x2, −x1, x3, x5, −x4; (7) 1/2+x1, 1/2−x2, x3, 1/2−x5, 1/2−x4; (8) 1/2+x2, 1/2+x1, x3, 1/2+x4, 1/2−x5; (9) x1, x2, 1/2+x3, 1/2+x4, 1/2+x5; (10) −x2, x1, 1/2+x3, 1/2−x5, 1/2+x4; (11) 1/2−x1, 1/2+x2, 1/2+x3, x5, x4; (12) −x1, −x2, 1/2+x3, 1/2−x4, 1/2−x5; (13) 1/2−x2, 1/2−x1, 1/2+x3, −x4, x5; (14) x2, −x1, 1/2+x3, 1/2+x5, 1/2−x4; (15) 1/2+x1, 1/2−x2, 1/2+x3, −x5, −x4; (16) 1/2+x2, 1/2+x1, 1/2+x3, x4, −x5.

Data collection top
O110rd Diffraction CCD
diffractometer
3452 independent reflections
Radiation source: X-ray tube2554 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3438 pixels mm-1θmax = 36.2°, θmin = 2.6°
Rotation method data acquisition using ω scansh = 1212
Absorption correction: gaussian
(Jana2000; Petricek, Dusek & Palatinus, 2000)
k = 1313
Tmin = 0.314, Tmax = 0.520l = 1414
43094 measured reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max = 0.028
wR(F2) = 0.018Δρmax = 0.27 e Å3
S = 0.94Δρmin = 0.32 e Å3
3452 reflectionsAbsolute structure: The absolute configuration was determined by the refinement of the twin fraction (Flack, 1983) of two domains related by the inversion center in the refinement program Jana2000 (Petricek and Dusek, 2000).
259 parametersAbsolute structure parameter: 0.932 (9)
Crystal data top
Ba2O8Si2TiV = 758.59 Å3
Mr = 506.7Z = 4
Tetragonal, X4bmMo Kα radiation
q1 = 0.30200a* + 0.30200b*; q2 = -0.30200a* + 0.30200b*µ = 11.67 mm1
a = 8.5353 ÅT = 110 K
c = 10.4128 Å0.09 × 0.06 × 0.03 mm
† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x2, x1, x3, −x5, x4; (3) 1/2−x1, 1/2+x2, x3, 1/2+x5, 1/2+x4; (4) −x1, −x2, x3, −x4, −x5; (5) 1/2−x2, 1/2−x1, x3, 1/2−x4, 1/2+x5; (6) x2, −x1, x3, x5, −x4; (7) 1/2+x1, 1/2−x2, x3, 1/2−x5, 1/2−x4; (8) 1/2+x2, 1/2+x1, x3, 1/2+x4, 1/2−x5; (9) x1, x2, 1/2+x3, 1/2+x4, 1/2+x5; (10) −x2, x1, 1/2+x3, 1/2−x5, 1/2+x4; (11) 1/2−x1, 1/2+x2, 1/2+x3, x5, x4; (12) −x1, −x2, 1/2+x3, 1/2−x4, 1/2−x5; (13) 1/2−x2, 1/2−x1, 1/2+x3, −x4, x5; (14) x2, −x1, 1/2+x3, 1/2+x5, 1/2−x4; (15) 1/2+x1, 1/2−x2, 1/2+x3, −x5, −x4; (16) 1/2+x2, 1/2+x1, 1/2+x3, x4, −x5.

Data collection top
O110rd Diffraction CCD
diffractometer
3452 independent reflections
Absorption correction: gaussian
(Jana2000; Petricek, Dusek & Palatinus, 2000)
2554 reflections with I > 3σ(I)
Tmin = 0.314, Tmax = 0.520Rint = 0.030
43094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.012Δρmax = 0.27 e Å3
wR(F2) = 0.018Δρmin = 0.32 e Å3
S = 0.94Absolute structure: The absolute configuration was determined by the refinement of the twin fraction (Flack, 1983) of two domains related by the inversion center in the refinement program Jana2000 (Petricek and Dusek, 2000).
3452 reflectionsAbsolute structure parameter: 0.932 (9)
259 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.327017 (7)0.827017 (7)00.00593 (3)
Ti1000.26787 (5)0.00429 (13)
Si10.12809 (4)0.62809 (4)0.25638 (7)0.00478 (9)
O100.50.3150 (2)0.0108 (4)
O20.12591 (12)0.62591 (12)0.10297 (15)0.0063 (3)
O30.29256 (12)0.57809 (10)0.32144 (11)0.0109 (2)
O4000.1049 (2)0.0100 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00617 (5)0.00617 (5)0.00544 (7)0.00286 (3)0.00014 (4)0.00014 (4)
Ti10.00301 (13)0.00301 (13)0.0068 (3)000
Si10.00484 (12)0.00484 (12)0.0047 (2)0.00072 (18)0.00021 (17)0.00021 (17)
O10.0112 (5)0.0112 (5)0.0099 (9)0.0053 (6)00
O20.0064 (4)0.0064 (4)0.0061 (7)0.0001 (5)0.0008 (4)0.0008 (4)
O30.0073 (4)0.0139 (4)0.0115 (5)0.0040 (3)0.0012 (4)0.0034 (3)
O40.0085 (6)0.0085 (6)0.0129 (10)000
Bond lengths (Å) top
AverageMinimumMaximum
Ba1—Si1i3.4960 (17)3.4616 (17)3.5285 (17)
Ba1—O1ii2.850 (3)2.733 (3)2.961 (3)
Ba1—O22.655 (3)2.642 (3)2.672 (3)
Ba1—O2iii2.797 (3)2.756 (3)2.843 (3)
Ba1—O2iv2.799 (3)2.756 (3)2.843 (3)
Ba1—O3i2.844 (4)2.729 (4)3.017 (4)
Ba1—O3ii3.011 (4)2.747 (4)3.503 (4)
Ba1—O3v3.007 (4)2.747 (4)3.503 (4)
Ba1—O3vi2.846 (4)2.729 (4)3.016 (4)
Ba1—O4vii3.344 (3)3.100 (3)3.553 (3)
Ba1—O4iv3.345 (3)3.100 (3)3.553 (3)
Ti1—Si1viii3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—Si1ix3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—Si1x3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—Si1xi3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—O3x1.979 (4)1.962 (4)1.995 (4)
Ti1—O3xii1.979 (4)1.962 (4)1.995 (4)
Ti1—O3xiii1.979 (4)1.962 (4)1.995 (4)
Ti1—O3xiv1.979 (4)1.962 (4)1.995 (4)
Ti1—O41.696 (4)1.688 (6)1.703 (6)
Ti1—O4xv3.508 (4)3.405 (6)3.617 (6)
Si1—Si1xi3.0936 (18)3.0924 (18)3.0949 (18)
Si1—O11.669 (3)1.655 (2)1.685 (4)
Si1—O21.598 (4)1.597 (3)1.601 (3)
Si1—O2xi3.460 (4)3.438 (4)3.481 (4)
Si1—O31.623 (4)1.611 (4)1.638 (4)
Si1—O3xvi1.623 (4)1.611 (4)1.638 (4)
O1—O22.686 (4)2.665 (4)2.708 (4)
O1—O2xv3.366 (4)3.292 (4)3.448 (4)
O1—O2xi2.687 (4)2.665 (4)2.708 (4)
O1—O2xvii3.369 (4)3.292 (4)3.448 (4)
O1—O32.599 (5)2.564 (4)2.651 (5)
O1—O3xi2.599 (4)2.564 (4)2.651 (5)
O1—O3xvi2.598 (5)2.564 (4)2.651 (5)
O1—O3xiv2.597 (4)2.564 (4)2.651 (5)
O2—O2xi3.042 (5)3.027 (5)3.059 (5)
O2—O32.718 (5)2.699 (5)2.737 (5)
O2—O3i3.290 (5)3.184 (5)3.446 (5)
O2—O3xvi2.718 (5)2.699 (5)2.737 (5)
O2—O3vi3.286 (5)3.184 (5)3.446 (5)
O2—O4vii3.372 (4)3.296 (5)3.442 (4)
O2—O4iv3.370 (4)3.296 (5)3.442 (4)
O3—O3iii2.686 (5)2.644 (5)2.711 (5)
O3—O3xvi2.603 (5)2.573 (5)2.624 (5)
O3—O3xviii2.684 (5)2.643 (5)2.711 (5)
O3—O4iv2.947 (5)2.915 (5)2.971 (5)
O3—O4xix3.516 (5)3.364 (5)3.697 (5)
Symmetry codes: (i) x1, x2, x31/2, x1/2, x1/2; (ii) x2, x11, x31/2, x1/2, x1/2; (iii) x2, x11, x3, x5, x4; (iv) x1+1/2, x21/2, x3, x1/2, x1/2; (v) x1+1/2, x21/2, x31/2, x5, x4; (vi) x21/2, x11/2, x31/2, x4, x5; (vii) x1, x21, x3, x4, x5; (viii) x1, x2+1, x3, x4, x5; (ix) x21, x1, x3, x5, x4; (x) x1+1/2, x2+1/2, x3, x1/2, x1/2; (xi) x1, x21, x3, x4, x5; (xii) x21/2, x1+1/2, x3, x1/2, x1/2; (xiii) x11/2, x21/2, x3, x1/2, x1/2; (xiv) x2+1/2, x11/2, x3, x1/2, x1/2; (xv) x1, x2, x3+1/2, x1/2, x1/2; (xvi) x21/2, x11/2, x3, x1/2, x1/2; (xvii) x1, x21, x3+1/2, x1/2, x1/2; (xviii) x2+1, x1, x3, x5, x4; (xix) x1+1/2, x21/2, x3+1/2, x5, x4.

Experimental details

Crystal data
Chemical formulaBa2O8Si2Ti
Mr506.7
Crystal system, space groupTetragonal, X4bm
Temperature (K)110
Wave vectorsq1 = 0.30200a* + 0.30200b*; q2 = -0.30200a* + 0.30200b*
a, c (Å)8.5353, 10.4128
V3)758.59
Z4
Radiation typeMo Kα
µ (mm1)11.67
Crystal size (mm)0.09 × 0.06 × 0.03
Data collection
DiffractometerO110rd Diffraction CCD
diffractometer
Absorption correctionGaussian
(Jana2000; Petricek, Dusek & Palatinus, 2000)
Tmin, Tmax0.314, 0.520
No. of measured, independent and
observed [I > 3σ(I)] reflections
43094, 3452, 2554
Rint0.030
(sin θ/λ)max1)0.830
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.018, 0.94
No. of reflections3452
No. of parameters259
No. of restraints?
Δρmax, Δρmin (e Å3)0.27, 0.32
Absolute structureThe absolute configuration was determined by the refinement of the twin fraction (Flack, 1983) of two domains related by the inversion center in the refinement program Jana2000 (Petricek and Dusek, 2000).
Absolute structure parameter0.932 (9)

† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x2, x1, x3, −x5, x4; (3) 1/2−x1, 1/2+x2, x3, 1/2+x5, 1/2+x4; (4) −x1, −x2, x3, −x4, −x5; (5) 1/2−x2, 1/2−x1, x3, 1/2−x4, 1/2+x5; (6) x2, −x1, x3, x5, −x4; (7) 1/2+x1, 1/2−x2, x3, 1/2−x5, 1/2−x4; (8) 1/2+x2, 1/2+x1, x3, 1/2+x4, 1/2−x5; (9) x1, x2, 1/2+x3, 1/2+x4, 1/2+x5; (10) −x2, x1, 1/2+x3, 1/2−x5, 1/2+x4; (11) 1/2−x1, 1/2+x2, 1/2+x3, x5, x4; (12) −x1, −x2, 1/2+x3, 1/2−x4, 1/2−x5; (13) 1/2−x2, 1/2−x1, 1/2+x3, −x4, x5; (14) x2, −x1, 1/2+x3, 1/2+x5, 1/2−x4; (15) 1/2+x1, 1/2−x2, 1/2+x3, −x5, −x4; (16) 1/2+x2, 1/2+x1, 1/2+x3, x4, −x5.

Computer programs: CrysAlis PRO CCD (Oxford diffraction, 2005), CrysAlis PRO RED (Oxford diffraction, 2005), SIR2002 (Burla et al., 2003), (Jana2000; Petricek, Dusek and Palatinus, 2000).

Selected bond lengths (Å) top
AverageMinimumMaximum
Ba1—Si1i3.4960 (17)3.4616 (17)3.5285 (17)
Ba1—O1ii2.850 (3)2.733 (3)2.961 (3)
Ba1—O22.655 (3)2.642 (3)2.672 (3)
Ba1—O2iii2.797 (3)2.756 (3)2.843 (3)
Ba1—O2iv2.799 (3)2.756 (3)2.843 (3)
Ba1—O3i2.844 (4)2.729 (4)3.017 (4)
Ba1—O3ii3.011 (4)2.747 (4)3.503 (4)
Ba1—O3v3.007 (4)2.747 (4)3.503 (4)
Ba1—O3vi2.846 (4)2.729 (4)3.016 (4)
Ba1—O4vii3.344 (3)3.100 (3)3.553 (3)
Ba1—O4iv3.345 (3)3.100 (3)3.553 (3)
Ti1—Si1viii3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—Si1ix3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—Si1x3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—Si1xi3.3610 (14)3.3502 (14)3.3697 (14)
Ti1—O3x1.979 (4)1.962 (4)1.995 (4)
Ti1—O3xii1.979 (4)1.962 (4)1.995 (4)
Ti1—O3xiii1.979 (4)1.962 (4)1.995 (4)
Ti1—O3xiv1.979 (4)1.962 (4)1.995 (4)
Ti1—O41.696 (4)1.688 (6)1.703 (6)
Ti1—O4xv3.508 (4)3.405 (6)3.617 (6)
Si1—Si1xi3.0936 (18)3.0924 (18)3.0949 (18)
Si1—O11.669 (3)1.655 (2)1.685 (4)
Si1—O21.598 (4)1.597 (3)1.601 (3)
Si1—O2xi3.460 (4)3.438 (4)3.481 (4)
Si1—O31.623 (4)1.611 (4)1.638 (4)
Si1—O3xvi1.623 (4)1.611 (4)1.638 (4)
O1—O22.686 (4)2.665 (4)2.708 (4)
O1—O2xv3.366 (4)3.292 (4)3.448 (4)
O1—O2xi2.687 (4)2.665 (4)2.708 (4)
O1—O2xvii3.369 (4)3.292 (4)3.448 (4)
O1—O32.599 (5)2.564 (4)2.651 (5)
O1—O3xi2.599 (4)2.564 (4)2.651 (5)
O1—O3xvi2.598 (5)2.564 (4)2.651 (5)
O1—O3xiv2.597 (4)2.564 (4)2.651 (5)
O2—O2xi3.042 (5)3.027 (5)3.059 (5)
O2—O32.718 (5)2.699 (5)2.737 (5)
O2—O3i3.290 (5)3.184 (5)3.446 (5)
O2—O3xvi2.718 (5)2.699 (5)2.737 (5)
O2—O3vi3.286 (5)3.184 (5)3.446 (5)
O2—O4vii3.372 (4)3.296 (5)3.442 (4)
O2—O4iv3.370 (4)3.296 (5)3.442 (4)
O3—O3iii2.686 (5)2.644 (5)2.711 (5)
O3—O3xvi2.603 (5)2.573 (5)2.624 (5)
O3—O3xviii2.684 (5)2.643 (5)2.711 (5)
O3—O4iv2.947 (5)2.915 (5)2.971 (5)
O3—O4xix3.516 (5)3.364 (5)3.697 (5)
Symmetry codes: (i) x1, x2, x31/2, x1/2, x1/2; (ii) x2, x11, x31/2, x1/2, x1/2; (iii) x2, x11, x3, x5, x4; (iv) x1+1/2, x21/2, x3, x1/2, x1/2; (v) x1+1/2, x21/2, x31/2, x5, x4; (vi) x21/2, x11/2, x31/2, x4, x5; (vii) x1, x21, x3, x4, x5; (viii) x1, x2+1, x3, x4, x5; (ix) x21, x1, x3, x5, x4; (x) x1+1/2, x2+1/2, x3, x1/2, x1/2; (xi) x1, x21, x3, x4, x5; (xii) x21/2, x1+1/2, x3, x1/2, x1/2; (xiii) x11/2, x21/2, x3, x1/2, x1/2; (xiv) x2+1/2, x11/2, x3, x1/2, x1/2; (xv) x1, x2, x3+1/2, x1/2, x1/2; (xvi) x21/2, x11/2, x3, x1/2, x1/2; (xvii) x1, x21, x3+1/2, x1/2, x1/2; (xviii) x2+1, x1, x3, x5, x4; (xix) x1+1/2, x21/2, x3+1/2, x5, x4.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds