Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of synthetic levyclaudite-(Sb), approximately (Pb1 − ySbyS)1.357[Sn1 − x(Cu2)xS2], has been determined by single-crystal X-ray diffraction on the basis of the (3 + 2)-dimensional superspace approach. This misfit-layer compound, of the cylindrite type, results from the combination of two heavily modulated triclinic Q and H subsystems with a common q wavevector and only one shared reciprocal axis (stacking direction). The Q pseudo-tetragonal layer, ∼(Pb0.70Sb0.30S), derived from the NaCl archetype, is positively charged; the H pseudo-hexagonal layer, ∼(Sn0.85Cu0.30S2), derived from the CdI2 archetype, is negatively charged, owing to the replacement of Sn4+ in an octahedral coordination by Cu+ pairs in an opposite triangular coordination. The analysis shows a strong transverse displacive modulation of the two layers, referred to as a `mondulation', correlated to a maximal Sb site occupation factor in the concavity of the Q layer undulation. The wavelength control of the `mondulation' obeys the vernier principle (14cQ ≅ 13cH), which would correspond to an energy minimization through a charge transfer density modulation wave, common to all two-dimensional misfit-layer inorganic compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810602547X/ck5020sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810602547X/ck5020sup2.hkl
Supplementary material

Computing details top

Program(s) used to refine structure: (Jana2006; Petricek and Dusek, 2000); software used to prepare material for publication: (Jana2006; Petricek and Dusek, 2000).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(I) top
Crystal data top
Cu0.299Pb0.951S3.357Sb0.406Sn0.851V = 275.72 (5) Å3
Mr = 474.1Z = 2
Triclinic, C1F(000) = 407
q1 = 0.00350a* + 0.15180b* + -0.01560c*; q2 = 0.63250a* + 1.07450b* + -0.44740c*‡Dx = 5.709 Mg m3
a = 3.6733 (4) ÅMo Kα radiation, λ = 0.71069 Å
b = 6.3120 (5) ŵ = 37.04 mm1
c = 11.9039 (12) ÅT = 293 K
α = 92.484 (8)°Platelet, black
β = 90.687 (9)°0.3 × 0.2 × 0.0024 mm
γ = 89.941 (8)°
† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x1, −x2, −x3, −x4, −x5; (3) 1/2+x1, 1/2+x2, x3, x4, x5; (4) 1/2−x1, 1/2−x2, −x3, −x4, −x5.

texobject1427796013.png; texobject1427796014.png

Data collection top
Absorption correction: gaussian
(Jana2006; Petricek, Dusek & Palatinus, 2006)
Rint = 0.100
Tmin = 0.039, Tmax = 0.912θmax = 35.0°, θmin = 6.4°
99197 measured reflectionsh = 55
29574 independent reflectionsk = 1212
0 reflections with I > 2.5σ(I)l = 1719
Refinement top
Refinement on F186 parameters
R[F2 > 2σ(F2)] = 0.074Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 2.65Δρmax = 3.34 e Å3
12026 reflectionsΔρmin = 3.21 e Å3
Crystal data top
Cu0.299Pb0.951S3.357Sb0.406Sn0.851β = 90.687 (9)°
Mr = 474.1γ = 89.941 (8)°
Triclinic, C1V = 275.72 (5) Å3
q1 = 0.00350a* + 0.15180b* + -0.01560c*; q2 = 0.63250a* + 1.07450b* + -0.44740c*‡Z = 2
a = 3.6733 (4) ÅMo Kα radiation
b = 6.3120 (5) ŵ = 37.04 mm1
c = 11.9039 (12) ÅT = 293 K
α = 92.484 (8)°0.3 × 0.2 × 0.0024 mm
† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x1, −x2, −x3, −x4, −x5; (3) 1/2+x1, 1/2+x2, x3, x4, x5; (4) 1/2−x1, 1/2−x2, −x3, −x4, −x5.

texobject1427796015.png; texobject1427796016.png

Data collection top
Absorption correction: gaussian
(Jana2006; Petricek, Dusek & Palatinus, 2006)
29574 independent reflections
Tmin = 0.039, Tmax = 0.9120 reflections with I > 2.5σ(I)
99197 measured reflectionsRint = 0.100
Refinement top
R[F2 > 2σ(F2)] = 0.074186 parameters
wR(F2) = 0.090Δρmax = 3.34 e Å3
S = 2.65Δρmin = 3.21 e Å3
12026 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0000.01480 (12)0.851 (2)
Cu0.0029 (9)0.0057 (5)0.1147 (3)0.0229 (11)0.149 (2)
S10.5033 (2)0.84278 (12)0.12342 (7)0.0177 (3)
Pb0.05541 (5)0.24113 (4)0.36783 (2)0.03573 (12)0.701 (10)
Sb0.0554080.2411320.3678320.03573 (12)0.299 (10)
S20.0402 (3)0.2583 (2)0.59639 (13)0.0310 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.0137 (2)0.00983 (16)0.0208 (3)0.00043 (12)0.00029 (14)0.00055 (12)
Cu0.0180 (16)0.0138 (13)0.037 (2)0.0009 (10)0.0004 (12)0.0021 (11)
S10.0193 (4)0.0133 (3)0.0205 (5)0.0005 (3)0.0005 (3)0.0008 (3)
Pb0.0382 (2)0.03020 (16)0.0390 (2)0.00096 (11)0.00807 (14)0.00192 (11)
Sb0.0382 (2)0.03020 (16)0.0390 (2)0.00096 (11)0.00807 (14)0.00192 (11)
S20.0395 (8)0.0295 (6)0.0237 (7)0.0002 (5)0.0052 (6)0.0019 (5)

Experimental details

Crystal data
Chemical formulaCu0.299Pb0.951S3.357Sb0.406Sn0.851
Mr474.1
Crystal system, space groupTriclinic, C1
Temperature (K)293
Wave vectorsq1 = 0.00350a* + 0.15180b* + -0.01560c*; q2 = 0.63250a* + 1.07450b* + -0.44740c*‡
a, b, c (Å)3.6733 (4), 6.3120 (5), 11.9039 (12)
α, β, γ (°)92.484 (8), 90.687 (9), 89.941 (8)
V3)275.72 (5)
Z2
Radiation typeMo Kα
µ (mm1)37.04
Crystal size (mm)0.3 × 0.2 × 0.0024
Data collection
Diffractometer?
Absorption correctionGaussian
(Jana2006; Petricek, Dusek & Palatinus, 2006)
Tmin, Tmax0.039, 0.912
No. of measured, independent and
observed [I > 2.5σ(I)] reflections
99197, 29574, 0
Rint0.100
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.090, 2.65
No. of reflections12026
No. of parameters186
No. of restraints?
Δρmax, Δρmin (e Å3)3.34, 3.21

† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x1, −x2, −x3, −x4, −x5; (3) 1/2+x1, 1/2+x2, x3, x4, x5; (4) 1/2−x1, 1/2−x2, −x3, −x4, −x5.

texobject1427796017.png; texobject1427796018.png

Computer programs: (Jana2006; Petricek and Dusek, 2000).

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds