Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, (C6H14N2)[CoCl4], is isostructural with (C6H14N2)[MCl4] (M = Cu, Zn) and contains doubly protonated dabconium C6H14N22+ cations and [CoCl4]2− tetrahedra. These species interact by way of bifurcated N—H...(Cl,Cl) hydrogen bonds to form corrugated chains. The chains interact by way of van der Waals forces and C—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011668/cm6044sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011668/cm6044Isup2.hkl
Contains datablock I

CCDC reference: 217359

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.078
  • Data-to-parameter ratio = 22.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), arose as a side product during our synthetic investigations of organically templated cobalt phosphate networks (Cowley & Chippindale, 1999; Natarajan et al., 2000). It is isostructural with (C6H14N2)[MCl4] (M = Cu, Zn), as described by Viossat et al. (1984) and Brammer et al. (2002), for the copper and zinc congeners, respectively.

In (I), the [CoCl4]2− tetrahedron shows slight geometrical deviations from regularity with dav(Co—Cl) = 2.2746 (6) Å and θav(Cl—Co—Cl) = 109.49 (2)° [spread of angles = 104.56 (2)–114.76 (2)°]. The dabconium (1,4-diazoniabicyclo[2.2.2]octane) cation has typical geometrical parameters [dav(N—C) = 1.502 (3) Å, dav(C—C) = 1.530 (3) Å, θav(C—N—C) = 110.3 (2)° and θav(N—C—C) = 108.6 (2)°].

The component species in (I) interact by way of bifurcated N—H···(Cl,Cl) hydrogen bonds (Table 2), resulting in each chloride ion acting as an acceptor with typical (Brammer et al., 2001) geometrical parameters of dav(N···Cl) = 3.298 (2) Å and θav(N—H···Cl) = 131.9°. The energetics of these interactions, and their possible role as synthons in supramolecular chemistry are described in detail by Brammer et al. (2002). In (I), these bonds (Fig. 2) result in corrugated polymeric chains which propagate along [001]. The unit-cell packing perpendicular to the chains involves van der Waals forces (Fig. 3) and C—H···Cl hydrogen bonds (Brammer et al., 2002; Table 2), assuming these are not merely an artefact of the crystal packing.

Experimental top

10 ml of 1 M CoCl2 solution, 10 ml of 1M H3PO4 solution and 0.5 g dabco (C6H12N2) were mixed together in a plastic bottle and heated to 373 K for 24 h, resulting in a blue solution. The solution was cooled to room temperature, and platy crystals of (I) grew as water slowly evaporated from the increasingly viscous liquors over several weeks.

Refinement top

H atoms were placed in idealized locations and refined by riding on their parent atom, with Uiso(H) = 1.2Ueq(parent atom) in each case.

Computing details top

Data collection: COLLECT (Enraf-Nonius, 1999); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I) (50% diaplcaement ellipsoids, arbitrary spheres for the H atoms, C—H H atoms omitted for clarity and hydrogen bonds indicated by dashed lines).
[Figure 2] Fig. 2. Hydrogen-bonding scheme in (I), leading to corrugated chains of alternating dabconium cations and [CoCl4]2− tetrahedra. Colour key: CoCl4 tetrahedra blue, Cl atoms green, C atoms blue, N atoms purple, H atoms grey (all radii arbitrary; C—H H atoms omitted for clarity). The H···Cl portions of the bifurcated N—H···(Cl,Cl) hydrogen bonds are coloured yellow.
[Figure 3] Fig. 3. Unit-cell packing in (I), viewed down [010]. The colour key as in Fig. 2.
(I) top
Crystal data top
(C6H14N2)[CoCl4]F(000) = 636
Mr = 314.92Dx = 1.795 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4875 (2) ÅCell parameters from 4880 reflections
b = 6.7174 (2) Åθ = 2.9–27.5°
c = 18.3121 (5) ŵ = 2.35 mm1
β = 92.8420 (1)°T = 120 K
V = 1165.62 (5) Å3Plate, blue
Z = 40.36 × 0.22 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2654 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1112
Tmin = 0.485, Tmax = 0.835k = 88
9112 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.0946P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2654 reflectionsΔρmax = 0.57 e Å3
119 parametersΔρmin = 0.74 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0121 (10)
Crystal data top
(C6H14N2)[CoCl4]V = 1165.62 (5) Å3
Mr = 314.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4875 (2) ŵ = 2.35 mm1
b = 6.7174 (2) ÅT = 120 K
c = 18.3121 (5) Å0.36 × 0.22 × 0.08 mm
β = 92.8420 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2654 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2304 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.835Rint = 0.057
9112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.06Δρmax = 0.57 e Å3
2654 reflectionsΔρmin = 0.74 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.76747 (3)0.44364 (4)0.116913 (15)0.01312 (12)
Cl10.80551 (5)0.27988 (8)0.01143 (3)0.01763 (15)
Cl20.59883 (5)0.67296 (8)0.08530 (3)0.01968 (15)
Cl30.96144 (5)0.59193 (8)0.17013 (3)0.01931 (15)
Cl40.68874 (6)0.23386 (8)0.20440 (3)0.01823 (15)
N10.69890 (17)0.7051 (3)0.07765 (9)0.0126 (4)
H10.67200.62210.04010.015*
N20.77093 (18)0.9255 (2)0.17843 (10)0.0125 (4)
H20.79741.00830.21610.015*
C10.6877 (2)0.5907 (3)0.14826 (11)0.0153 (5)
H30.58980.54280.15760.018*
H40.75110.47360.14520.018*
C20.6041 (2)0.8838 (3)0.08040 (12)0.0148 (4)
H50.61270.95680.03340.018*
H60.50460.84190.08900.018*
C30.8490 (2)0.7691 (3)0.06160 (12)0.0156 (4)
H70.91110.65090.05700.019*
H80.85660.84360.01490.019*
C40.7291 (2)0.7268 (3)0.21025 (12)0.0187 (5)
H90.80900.66810.23560.022*
H100.64860.74280.24620.022*
C50.6484 (2)1.0179 (3)0.14283 (12)0.0178 (5)
H110.56851.03450.17920.021*
H120.67521.15100.12350.021*
C60.8947 (2)0.9019 (3)0.12436 (12)0.0171 (5)
H130.92511.03370.10520.020*
H140.97490.84020.14850.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01226 (17)0.01364 (18)0.01339 (18)0.00131 (11)0.00008 (12)0.00016 (11)
Cl10.0197 (3)0.0173 (3)0.0159 (3)0.0005 (2)0.0002 (2)0.0041 (2)
Cl20.0182 (3)0.0216 (3)0.0197 (3)0.0088 (2)0.0049 (2)0.0060 (2)
Cl30.0131 (3)0.0212 (3)0.0236 (3)0.0010 (2)0.0006 (2)0.0075 (2)
Cl40.0242 (3)0.0149 (3)0.0153 (3)0.0028 (2)0.0008 (2)0.0017 (2)
N10.0120 (8)0.0115 (9)0.0146 (9)0.0001 (7)0.0019 (7)0.0021 (7)
N20.0132 (8)0.0097 (9)0.0148 (9)0.0005 (7)0.0031 (7)0.0019 (7)
C10.0150 (10)0.0127 (10)0.0183 (11)0.0026 (9)0.0020 (9)0.0034 (8)
C20.0125 (10)0.0150 (10)0.0171 (11)0.0032 (9)0.0021 (8)0.0002 (9)
C30.0100 (9)0.0188 (11)0.0177 (11)0.0000 (9)0.0015 (8)0.0006 (9)
C40.0274 (12)0.0131 (11)0.0155 (11)0.0030 (10)0.0011 (9)0.0022 (9)
C50.0171 (11)0.0157 (11)0.0208 (12)0.0062 (10)0.0033 (9)0.0029 (10)
C60.0118 (10)0.0172 (11)0.0220 (12)0.0019 (9)0.0010 (9)0.0023 (9)
Geometric parameters (Å, º) top
Co1—Cl12.2672 (6)C1—H40.9900
Co1—Cl32.2694 (6)C2—C51.531 (3)
Co1—Cl22.2751 (6)C2—H50.9900
Co1—Cl42.2867 (6)C2—H60.9900
N1—C21.500 (3)C3—C61.534 (3)
N1—C31.503 (3)C3—H70.9900
N1—C11.503 (3)C3—H80.9900
N1—H10.9300C4—H90.9900
N2—C51.496 (3)C4—H100.9900
N2—C41.502 (3)C5—H110.9900
N2—C61.506 (3)C5—H120.9900
N2—H20.9300C6—H130.9900
C1—C41.524 (3)C6—H140.9900
C1—H30.9900
Cl1—Co1—Cl3114.76 (2)N1—C2—H6110.1
Cl1—Co1—Cl2104.56 (2)C5—C2—H6110.1
Cl3—Co1—Cl2110.92 (2)H5—C2—H6108.4
Cl1—Co1—Cl4111.66 (2)N1—C3—C6108.66 (16)
Cl3—Co1—Cl4104.82 (2)N1—C3—H7110.0
Cl2—Co1—Cl4110.21 (2)C6—C3—H7110.0
C2—N1—C3109.80 (16)N1—C3—H8110.0
C2—N1—C1111.33 (15)C6—C3—H8110.0
C3—N1—C1109.89 (16)H7—C3—H8108.3
C2—N1—H1108.6N2—C4—C1108.49 (17)
C3—N1—H1108.6N2—C4—H9110.0
C1—N1—H1108.6C1—C4—H9110.0
C5—N2—C4109.99 (16)N2—C4—H10110.0
C5—N2—C6110.77 (16)C1—C4—H10110.0
C4—N2—C6110.10 (16)H9—C4—H10108.4
C5—N2—H2108.6N2—C5—C2109.23 (16)
C4—N2—H2108.6N2—C5—H11109.8
C6—N2—H2108.6C2—C5—H11109.8
N1—C1—C4108.92 (16)N2—C5—H12109.8
N1—C1—H3109.9C2—C5—H12109.8
C4—C1—H3109.9H11—C5—H12108.3
N1—C1—H4109.9N2—C6—C3108.29 (16)
C4—C1—H4109.9N2—C6—H13110.0
H3—C1—H4108.3C3—C6—H13110.0
N1—C2—C5108.05 (16)N2—C6—H14110.0
N1—C2—H5110.1C3—C6—H14110.0
C5—C2—H5110.1H13—C6—H14108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.932.773.4175 (18)128
N1—H1···Cl20.932.463.1832 (18)135
N2—H2···Cl3i0.932.753.3866 (19)127
N2—H2···Cl4i0.932.463.2064 (18)138
C1—H3···Cl2ii0.992.703.488 (2)137
C1—H4···Cl3iii0.992.823.589 (2)135
C2—H6···Cl4ii0.992.783.588 (2)140
C3—H7···Cl1iii0.992.813.376 (2)117
C4—H9···Cl3i0.992.813.409 (2)119
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H14N2)[CoCl4]
Mr314.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.4875 (2), 6.7174 (2), 18.3121 (5)
β (°) 92.8420 (1)
V3)1165.62 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.36 × 0.22 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.485, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
9112, 2654, 2304
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.06
No. of reflections2654
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.74

Computer programs: COLLECT (Enraf-Nonius, 1999), COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999), SHELXL97.

Selected bond lengths (Å) top
Co1—Cl12.2672 (6)Co1—Cl22.2751 (6)
Co1—Cl32.2694 (6)Co1—Cl42.2867 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.932.773.4175 (18)128
N1—H1···Cl20.932.463.1832 (18)135
N2—H2···Cl3i0.932.753.3866 (19)127
N2—H2···Cl4i0.932.463.2064 (18)138
C1—H3···Cl2ii0.992.703.488 (2)137
C1—H4···Cl3iii0.992.823.589 (2)135
C2—H6···Cl4ii0.992.783.588 (2)140
C3—H7···Cl1iii0.992.813.376 (2)117
C4—H9···Cl3i0.992.813.409 (2)119
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x+2, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds