Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystal data: Na4Si3Al3O12Cl, cubic, space group P43n, Z = 2, F(000) = 233.06 fm, μn = 0.06 cm−1, lattice parameter ao (Å) [T] (K) at eight temperatures: 8.882 (1) [295]; 8.902 (2) [500]; 8.912 (1) [600]; 8.923 (1) [700] 8.951 (2) [800]; 8.971(1) [900]; 8.988 (1) [1000]; 9.037 (1) [1200]. The crystal structure has been determined at six temperatures (295 ≤ T ≤ 1200 K) based on neutron diffraction data with (sin θ/λ) < 0.80 Å−1. Besides conventional parameters, the least-squares refinement model included thermal tensor parameters up to fourth-order for sodium and chlorine (295 ≤ T ≤ 1200 K) and up to third-order for oxygen (T ≥ 700 K), together with the 1:1 coupled site occupancy factors of sodium and chlorine (T = 1200 K). The indices-of-fit, wR(F2), are in the range 0.015–0.028 with observation-to-parameter ratios from 7.0 to 8.6. Bond lengths and angles in the aluminosilicate framework have average e.s.d.'s less than 0.002 Å and 0.08°. Between 295 and 1200 K, the observed Si—O (Al—O) bond lengths differ by −0.015 Å (−0.012 Å); corrections for librating rigid SiO4 (AlO4) groups change the difference to +0.004 Å (+0.006 Å), compared with the 295 K value of 1.620 Å (1.741 Å). The unique Si—O—Al angle increases from 138.24° (295 K) to 146.87° (1200 K), while the Si and Al valence angles are virtually unchanged. Between 295 and 1200 K the [Na4Cl] clusters expand with increases in the Na—Cl bond lengths of 0.200 Å, with simultaneous increases in Na—O bond lengths of 0.145 Å and decreases in the shortest Na...O contact distances of 0.126 Å. The thermal expansion of sodalite is attributed to the increasing amplitudes of coupled translational motion of the Na+ ions and the librational motion of the [Al/ SiO4] tetrahedra, leading to the untwisting of the aluminosilicate framework. Maps of the probability density functions for Na+ and Cl indicate ionic diffusion paths along (111) directions. There is a finite probability of finding the Na+ ion within the plane of the next-nearest O atoms, suggesting that Na+ jumps from an occupied to an unoccupied site in the next-nearest cage through the six-membered ring of [Al/SiO4] tetrahedra.

Supporting information

cif

Crystallographic Information File (CIF)
Contains datablocks text, cr0505a

-1

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds