Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecule of the title compound, C19H23NO, contains two phenyl rings and a piperidinyl ring. The dihedral angle between the phenyl rings is 40.99 (5)°. The piperidine ring has a chair conformation. There is an intramolecular O—H...N hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016513/cv6145sup1.cif
Contains datablocks nn2m, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016513/cv6145Isup2.hkl
Contains datablock I

CCDC reference: 198963

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.058
  • wR factor = 0.136
  • Data-to-parameter ratio = 20.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

During the process of UV-radiation curing there is an oxygen as a free radical in the medium. To overcome the negative effect caused by the oxygen, we synthesized erythro-2-piperidinyl-1,2 diphenyl ethanol to use it as a hydrogen donor for Type II initiators (Davidson, 1999). In this paper we report the structure of erythro-2-piperidinyl-1,2 diphenyl ethanol, (I). An ORTEPIII (Burnett & Johnson, 1996) plot of compound is shown in Fig.1.

The C6—N1 and C1—N1 bond distances are 1.4749 (19) and 1.4730 (18) Å, respectively, which are similar to the corresponding bond lengths in ethyl 4-{2-[1-(6-methyl-3-pyridazinyl)-4-piperidinyl]ethoxy}benzoate [1.467 (5) and 1.472 (4) Å; Jottier et al., 1991] and 3-{2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl} −2,9-dimethyl]-4H-pyrido[1,2-alpyrimidin-4-one (Ocaperidone) [1.477 (9) and 1.463 (9) Å; Jottier et al., 1992]. The C7—N1, C7—C14 and C14—O2 bond distances are 1.4872 (17) 1.5563 (19) and 1.4286 (17) Å, respectively, which are similar to the corresponding bond lengths in N-(2-Hydroxyethyl)-piperidine, N-(2-Hydroxyethyl)morpholine and N-(2-Hydroxyethyl)piperazine [1.495 (4), 1.493 (4) and 1.397 (4) Å, respectively; Castellari & Sabatino, 1996]. The erythro-2-piperidinyl-1,2 diphenyl ethanol molecule contains three ring systems: two phenyl rings and a piperidinyl ring. For the piperidinyl ring we calculated, following the method of Cremer & Pople (1975), a phase angle θ2 =2.15 (17)° and ϕ2 =34 (5)°, indicating a chair conformation, and a puckering amplitude Q=0.5814 (17) Å.

There is an intramolecular O2—H2A···N1 hydrogen bond (Table 1).

Experimental top

Erythro-2-piperidinyl-1,2-diphenyl ethanol: 1 g of trans-stilbene oxide and 1 molar equivalent of distilled piperidine was refluxed for 12 h with vigorous stirring. The product was extracted with diethyl ether and excess morpholine was separated by the addition of 5 ml of distilled water. The combined organic layers were washed with distilled water several times. The solution was dried over anhydrous magnesium sulfate. The crude product was recrystallized from ethanol. M.p:373 K Analysis calculated for C19H23NO: C,81.14; H, 8.18; N, 4.98. Found C, 81.22; H, 8.19; N,5.03.

Refinement top

The structure was solved by direct methods and refined by full-matrix least squares. The H atoms were located from difference Fourier maps and refined isotropically. The C—H bond distances range from 0.93 to 0.98 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. An ORTEPIII (Burnett & Johnson, 1996). drawing of the title compound showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.
Erythro-2-piperidinyl-1,2-diphenyl ethanol top
Crystal data top
C19H23NOF(000) = 608
Mr = 281.38Dx = 1.174 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5874 reflections
a = 13.6624 (10) Åθ = 3.0–28.3°
b = 5.6452 (10) ŵ = 0.07 mm1
c = 20.678 (4) ÅT = 183 K
β = 93.46 (4)°Block, colourless
V = 1591.9 (4) Å30.72 × 0.50 × 0.36 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2344 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 28.3°, θmin = 3.0°
Detector resolution: 8.33 pixels mm-1h = 1518
ω scansk = 77
9095 measured reflectionsl = 2725
3833 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
3833 reflectionsΔρmax = 0.23 e Å3
191 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C19H23NOV = 1591.9 (4) Å3
Mr = 281.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6624 (10) ŵ = 0.07 mm1
b = 5.6452 (10) ÅT = 183 K
c = 20.678 (4) Å0.72 × 0.50 × 0.36 mm
β = 93.46 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2344 reflections with I > 2σ(I)
9095 measured reflectionsRint = 0.080
3833 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.81Δρmax = 0.23 e Å3
3833 reflectionsΔρmin = 0.33 e Å3
191 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.84897 (8)0.62204 (19)0.21889 (5)0.0361 (3)
H2A0.81250.62620.18590.054*
N10.85600 (8)0.9562 (2)0.12095 (5)0.0231 (3)
C10.89873 (11)1.0492 (3)0.06236 (7)0.0314 (4)
H1A0.96130.97280.05700.038*
H1B0.91041.21790.06750.038*
C20.83133 (12)1.0068 (3)0.00242 (7)0.0366 (4)
H2B0.86141.06930.03530.044*
H2C0.82180.83790.00380.044*
C40.69019 (12)1.0392 (4)0.07091 (7)0.0385 (4)
H4A0.67460.87210.06680.046*
H4B0.62991.12420.07750.046*
C50.73277 (12)1.1255 (3)0.00909 (8)0.0389 (4)
H5A0.68871.08670.02790.047*
H5B0.74091.29620.01060.047*
C60.76167 (11)1.0763 (3)0.12906 (7)0.0339 (4)
H6C0.77311.24460.13520.041*
H6D0.73301.01580.16760.041*
C70.92417 (10)0.9814 (3)0.17938 (6)0.0207 (3)
H7A0.93211.15020.18940.025*
C81.02439 (10)0.8759 (2)0.16939 (7)0.0210 (3)
C91.03625 (12)0.6620 (3)0.13777 (7)0.0300 (4)
H9A0.98150.58300.11970.036*
C101.12856 (14)0.5643 (3)0.13267 (8)0.0396 (4)
H10A1.13530.42040.11150.048*
C111.21075 (13)0.6807 (4)0.15911 (8)0.0434 (5)
H11A1.27270.61540.15560.052*
C121.20065 (12)0.8918 (3)0.19044 (8)0.0389 (4)
H12A1.25570.96970.20850.047*
C131.10811 (11)0.9896 (3)0.19525 (7)0.0264 (4)
H13A1.10201.13420.21620.032*
C140.87706 (11)0.8576 (3)0.23715 (7)0.0248 (3)
H14A0.81780.94550.24670.030*
C150.94437 (10)0.8513 (3)0.29803 (7)0.0227 (3)
C161.00775 (12)0.6646 (3)0.31171 (7)0.0311 (4)
H16A1.00900.53690.28340.037*
C171.06956 (12)0.6666 (3)0.36747 (8)0.0367 (4)
H17A1.11210.54030.37610.044*
C181.06850 (12)0.8532 (3)0.40996 (8)0.0369 (4)
H18A1.11000.85320.44730.044*
C191.00555 (12)1.0408 (3)0.39707 (8)0.0367 (4)
H19A1.00451.16790.42560.044*
C200.94356 (11)1.0388 (3)0.34096 (7)0.0303 (4)
H20A0.90111.16520.33230.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0388 (7)0.0433 (7)0.0266 (6)0.0190 (5)0.0054 (5)0.0016 (5)
N10.0191 (6)0.0348 (7)0.0156 (6)0.0024 (5)0.0036 (5)0.0026 (5)
C10.0252 (8)0.0450 (10)0.0242 (8)0.0050 (7)0.0041 (6)0.0078 (7)
C20.0340 (9)0.0593 (12)0.0168 (8)0.0035 (8)0.0038 (6)0.0034 (7)
C40.0222 (8)0.0684 (13)0.0246 (8)0.0014 (8)0.0001 (7)0.0067 (8)
C50.0333 (10)0.0574 (12)0.0251 (8)0.0033 (8)0.0069 (7)0.0023 (8)
C60.0237 (8)0.0551 (11)0.0228 (8)0.0072 (7)0.0002 (6)0.0087 (7)
C70.0209 (7)0.0232 (8)0.0180 (7)0.0018 (5)0.0021 (5)0.0022 (6)
C80.0230 (7)0.0233 (8)0.0175 (7)0.0004 (6)0.0060 (6)0.0040 (6)
C90.0369 (9)0.0254 (9)0.0289 (8)0.0028 (6)0.0124 (7)0.0009 (7)
C100.0542 (12)0.0314 (10)0.0355 (9)0.0132 (8)0.0217 (8)0.0052 (8)
C110.0334 (10)0.0648 (13)0.0333 (9)0.0214 (8)0.0129 (8)0.0143 (9)
C120.0227 (9)0.0656 (13)0.0284 (9)0.0013 (8)0.0017 (7)0.0053 (8)
C130.0238 (8)0.0330 (9)0.0227 (7)0.0025 (6)0.0043 (6)0.0010 (6)
C140.0221 (7)0.0321 (9)0.0207 (7)0.0026 (6)0.0059 (6)0.0020 (6)
C150.0207 (7)0.0302 (8)0.0181 (7)0.0018 (6)0.0081 (6)0.0025 (6)
C160.0383 (9)0.0326 (9)0.0233 (8)0.0049 (7)0.0093 (7)0.0029 (7)
C170.0335 (9)0.0468 (11)0.0302 (9)0.0098 (7)0.0059 (7)0.0116 (8)
C180.0296 (9)0.0535 (12)0.0270 (8)0.0048 (8)0.0036 (7)0.0083 (8)
C190.0408 (10)0.0394 (10)0.0292 (9)0.0048 (7)0.0028 (7)0.0059 (7)
C200.0320 (9)0.0313 (9)0.0277 (8)0.0034 (6)0.0028 (7)0.0013 (7)
Geometric parameters (Å, º) top
O2—C141.4286 (17)C8—C131.390 (2)
O2—H2A0.8200C9—C101.386 (2)
N1—C11.4730 (18)C9—H9A0.9300
N1—C61.4749 (19)C10—C111.385 (3)
N1—C71.4872 (17)C10—H10A0.9300
C1—C21.518 (2)C11—C121.367 (2)
C1—H1A0.9700C11—H11A0.9300
C1—H1B0.9700C12—C131.389 (2)
C2—C51.518 (2)C12—H12A0.9300
C2—H2B0.9700C13—H13A0.9300
C2—H2C0.9700C14—C151.5139 (19)
C4—C51.516 (2)C14—H14A0.9800
C4—C61.517 (2)C15—C201.382 (2)
C4—H4A0.9700C15—C161.383 (2)
C4—H4B0.9700C16—C171.388 (2)
C5—H5A0.9700C16—H16A0.9300
C5—H5B0.9700C17—C181.372 (2)
C6—H6C0.9700C17—H17A0.9300
C6—H6D0.9700C18—C191.380 (2)
C7—C81.5187 (19)C18—H18A0.9300
C7—C141.5563 (19)C19—C201.395 (2)
C7—H7A0.9800C19—H19A0.9300
C8—C91.387 (2)C20—H20A0.9300
C14—O2—H2A109.5C9—C8—C7122.51 (13)
C1—N1—C6108.77 (12)C13—C8—C7119.61 (13)
C1—N1—C7111.98 (11)C10—C9—C8120.99 (15)
C6—N1—C7111.87 (11)C10—C9—H9A119.5
N1—C1—C2111.37 (12)C8—C9—H9A119.5
N1—C1—H1A109.4C11—C10—C9120.06 (16)
C2—C1—H1A109.4C11—C10—H10A120.0
N1—C1—H1B109.4C9—C10—H10A120.0
C2—C1—H1B109.4C12—C11—C10119.87 (15)
H1A—C1—H1B108.0C12—C11—H11A120.1
C5—C2—C1110.73 (14)C10—C11—H11A120.1
C5—C2—H2B109.5C11—C12—C13119.93 (16)
C1—C2—H2B109.5C11—C12—H12A120.0
C5—C2—H2C109.5C13—C12—H12A120.0
C1—C2—H2C109.5C12—C13—C8121.34 (15)
H2B—C2—H2C108.1C12—C13—H13A119.3
C5—C4—C6111.25 (13)C8—C13—H13A119.3
C5—C4—H4A109.4O2—C14—C15109.76 (12)
C6—C4—H4A109.4O2—C14—C7109.39 (11)
C5—C4—H4B109.4C15—C14—C7112.96 (11)
C6—C4—H4B109.4O2—C14—H14A108.2
H4A—C4—H4B108.0C15—C14—H14A108.2
C2—C5—C4108.80 (14)C7—C14—H14A108.2
C2—C5—H5A109.9C20—C15—C16118.80 (13)
C4—C5—H5A109.9C20—C15—C14119.23 (13)
C2—C5—H5B109.9C16—C15—C14121.97 (13)
C4—C5—H5B109.9C15—C16—C17120.40 (15)
H5A—C5—H5B108.3C15—C16—H16A119.8
N1—C6—C4111.82 (13)C17—C16—H16A119.8
N1—C6—H6C109.3C18—C17—C16120.58 (15)
C4—C6—H6C109.3C18—C17—H17A119.7
N1—C6—H6D109.3C16—C17—H17A119.7
C4—C6—H6D109.3C17—C18—C19119.73 (15)
H6C—C6—H6D107.9C17—C18—H18A120.1
N1—C7—C8112.18 (11)C19—C18—H18A120.1
N1—C7—C14108.24 (11)C18—C19—C20119.64 (16)
C8—C7—C14110.26 (11)C18—C19—H19A120.2
N1—C7—H7A108.7C20—C19—H19A120.2
C8—C7—H7A108.7C15—C20—C19120.84 (14)
C14—C7—H7A108.7C15—C20—H20A119.6
C9—C8—C13117.81 (14)C19—C20—H20A119.6
C6—N1—C1—C259.83 (17)C10—C11—C12—C130.5 (3)
C7—N1—C1—C2176.02 (13)C11—C12—C13—C80.8 (2)
N1—C1—C2—C559.36 (19)C9—C8—C13—C120.8 (2)
C1—C2—C5—C455.07 (18)C7—C8—C13—C12176.19 (13)
C6—C4—C5—C254.21 (19)N1—C7—C14—O251.90 (15)
C1—N1—C6—C458.89 (17)C8—C7—C14—O271.15 (14)
C7—N1—C6—C4176.89 (13)N1—C7—C14—C15174.47 (12)
C5—C4—C6—N157.5 (2)C8—C7—C14—C1551.43 (16)
C1—N1—C7—C852.85 (16)O2—C14—C15—C20149.17 (13)
C6—N1—C7—C8175.26 (12)C7—C14—C15—C2088.47 (16)
C1—N1—C7—C14174.72 (12)O2—C14—C15—C1631.64 (19)
C6—N1—C7—C1462.87 (15)C7—C14—C15—C1690.73 (17)
N1—C7—C8—C941.60 (18)C20—C15—C16—C170.2 (2)
C14—C7—C8—C979.10 (16)C14—C15—C16—C17178.95 (14)
N1—C7—C8—C13141.55 (13)C15—C16—C17—C180.2 (2)
C14—C7—C8—C1397.74 (15)C16—C17—C18—C190.1 (3)
C13—C8—C9—C100.6 (2)C17—C18—C19—C200.0 (3)
C7—C8—C9—C10176.35 (14)C16—C15—C20—C190.2 (2)
C8—C9—C10—C110.3 (2)C14—C15—C20—C19179.06 (14)
C9—C10—C11—C120.2 (3)C18—C19—C20—C150.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.822.392.774 (2)109

Experimental details

Crystal data
Chemical formulaC19H23NO
Mr281.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)13.6624 (10), 5.6452 (10), 20.678 (4)
β (°) 93.46 (4)
V3)1591.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.72 × 0.50 × 0.36
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9095, 3833, 2344
Rint0.080
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.136, 0.81
No. of reflections3833
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.33

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
O2—C141.4286 (17)N1—C71.4872 (17)
N1—C11.4730 (18)C7—C141.5563 (19)
N1—C61.4749 (19)
C1—N1—C6108.77 (12)C8—C7—C14110.26 (11)
C1—N1—C7111.98 (11)C9—C8—C13117.81 (14)
C6—N1—C7111.87 (11)C9—C8—C7122.51 (13)
N1—C6—C4111.82 (13)O2—C14—C15109.76 (12)
N1—C7—C8112.18 (11)O2—C14—C7109.39 (11)
N1—C7—C14108.24 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.82012.39382.774 (2)109.25
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds