Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Nb6Cl12(H2O)6]Cl2·3C10H8N2, is an example of a `hybrid' inorganic–organic compound, where the inorganic and organic parts do not inter­act by covalent bonds but are joined by hydrogen bonding. The inorganic part contains a hexa­nuclear mixed-valence niobium cluster aqua cation [Nb6(μ-Cl)12(H2O)6]2+, with the typical {M6X12} structure, and two Cl counter-ions. The organic part consists of two crystallographically independent 2,2′-bipyridine mol­ecules; one is planar and lies on a centre of symmetry, and the other is twisted by 42.1 (5)°. The Nb—Nb, Nb—Cl and Nb—O bond distances are close to those found in other salts of this cation. The inorganic and organic parts are joined together by an extended system of hydrogen bonds. Six of the 12 H atoms of the aqua ligands form hydrogen bonds with the N atoms of the bipyridine mol­ecules, and the other six with Cl anions. At the same time, the bipyridine mol­ecules use both N atoms in hydrogen bonding with two cluster cations. Each Cl anion forms three Cl...H—O bonds with the three cluster cations. The resulting three-dimensional framework shows a non-trivial example of a (12,3,2,2) connected net. The disposition and relative orientation of the cluster cations and the geometric requirements of the hydrogen-bonds dictate the conformations of the bipyridine mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040171/cv6596sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040171/cv6596Isup2.hkl
Contains datablock I

CCDC reference: 296545

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.037
  • wR factor = 0.094
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.48 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.15 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The chemistry of niobium clusters has developed rapidly in recent years (Brnicevic, Kojic-Prodic et al., 1995; Brnicevic, Planinic et al., 1995; Brnicevic, 1999; Perrin, 1999; Prokopuk & Shriver, 1999). Facile procedures for the preparation of substituted moieties with an Nb6Cl12 cluster core enable new compounds with various apical ligands to be obtained.

The title compound, (I), is an example of a `hybrid' inorganic–organic compound, where the inorganic and organic parts do not interact by covalent bonds but are joined by hydrogen bonds. The inorganic part contains a hexanuclear mixed-valence niobium cluster aqua cation, [Nb6(µ-Cl)12(H2O)6]2+ (Fig. 1), and two Cl counterions. The organic part consists of two crystallographically independent 2,2'-bipyridine molecules (Fig. 2).

The cluster core in the cation has the typical {M6X12} structure of an octahedron of metal atoms with halogen bridges on each edge. In addition, there are six coordinated terminal water molecules, one per Nb atom. The whole cation lies at the centre of symmetry (Wyckoff position 1a). The Nb—Nb, Nb—Cl and Nb—O bond distances (Table 1) are quite close to those found in other salts of this cation, namely [Nb6Cl12(H2O)6](CH3O)2·8H2O (Brnicevic, Planinic et al., 1995) and [Nb6Cl12(H2O)6](CH3O)2·0.25CH3OH·6H2O (Brnicevic, Kojic-Prodic et al., 1995).

The two crystallographically independent 2,2'-bipyridine molecules possess different conformations: one of them is planar and located on the inversion centre, while the other is twisted by 42.1 (5)° and lies in a general position. The reason for this difference can be found in an analysis of the hydrogen bonding in the crystal, where all possible hydrogen bonds are realised (Table 2). Six of the 12 H atoms of the H2O ligands form hydrogen bonds with the N atoms of the bipyridine molecules and the remaining six with Cl anions. At the same time, the bipyridine molecules use both N atoms in hydrogen bonds with two cluster cations. Each Cl anion forms three Cl···H—O hydrogen bonds with three cluster cations.

In the crystal packing one can select `inorganic' layers of clusters and Cl anions joined together by hydrogen bonds (Fig. 3). These layers lie in the (001) plane. The bipyridine molecules join the layers by means of N···H—O hydrogen bonds (Fig. 4). The centrosymmetric planar bipyridine molecule joins clusters in the (0,1,0) and (0,0,1) positions, with a cluster–cluster distance of 14.304 Å. The twisted molecule joins clusters in the (0,0,0) and (0,0,1) positions with a shorter cluster–cluster distance of 12.258 Å. This difference between the cluster–cluster distances results from the fact that the centre of the planar bipyridine molecule lies exactly on the line between the centres of the cations, while the centre of the twisted molecule is located away from this line (centre–centre–centre angle is 114.8°). Taking into account the rigid geometry of the cluster cation, one can state that the positions of the cations and their relative orientations, along with the hydrogen-bonding geometry, dictate the conformation of the bipyridine molecules.

The resulting three-dimensional framework shows a non-trivial example of a (12,3,2,2) connected net (O'Keeffe et al., 2000). According to the results of the ADS subprogram of the TOPOS4.0 program set (Blatov et al., 2000) the topology of the hydrogen-bond net can be characterized by the total Schläfli symbol of {43}2{48;622;831;105}{4}2{6}.

Experimental top

An aqueous solution (10 ml) of K4Nb6Cl18 (50 mg, 0.037 mmol) was mixed with a solution of bpy (34.7 mg, 0.222 mmol) in ethanol (3 ml). The mixture was boiled for 30 min, and then left at room temperature. After one week, a dark-green solid, (I), was obtained. This was decanted, washed with ethanol and dried in air (yield 18.7 mg, 31.0%).

Refinement top

C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the coordinated water molecules were located in a difference electron-density map and refined with Uiso(H) fixed at 0.05 Å−2 and O—H bonds restrained to 0.82 (2) Å. The highest residual peak of 1.27 e Å−3 is situated 0.51 Å from atom Cl7.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Bruker, 2005); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: local programs.

Figures top
[Figure 1] Fig. 1. The cluster cation in the crystal structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (−x, −y, −z).
[Figure 2] Fig. 2. The organic molecules in the crystal structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (−x, 1 − y, 1 − z).
[Figure 3] Fig. 3. The crystal packing of (I), showing the inorganic layers without the bipyridine molecules. Hydrogen bonds are shown by dashed lines. The H atoms of the bipyridine molecules have been omitted for clarity. [Please revise to show the atoms in the key at the same relative sizes as those in the diagram]
[Figure 4] Fig. 4. The crystal packing of (I), showing the inorganic layers joined by bipyridine molecules. Hydrogen bonds are shown by dashed lines. The H atoms of the bipyridine molecules have omitted for clarity. [Please revise to show the atoms in the key at the same relative sizes as those in the diagram]
Hexaaquadodeca-µ-chloro-hexaniobium(II,III) dichloride 2,2'-bipyridine trisolvate top
Crystal data top
[Nb6Cl12(H2O)6]Cl2·3C10H8N2Z = 1
Mr = 1630.41F(000) = 790
Triclinic, P1Dx = 2.163 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1546 (12) ÅCell parameters from 3551 reflections
b = 11.2503 (15) Åθ = 2.5–28.2°
c = 12.2583 (11) ŵ = 2.12 mm1
α = 74.822 (4)°T = 292 K
β = 74.551 (4)°Prism, dark green
γ = 70.901 (4)°0.09 × 0.03 × 0.01 mm
V = 1251.8 (3) Å3
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
5658 independent reflections
Radiation source: fine-focus sealed tube4317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 25 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω and ϕ scansh = 1313
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.871, Tmax = 0.980l = 1115
12802 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.4105P]
where P = (Fo2 + 2Fc2)/3
5658 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 1.27 e Å3
6 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Nb6Cl12(H2O)6]Cl2·3C10H8N2γ = 70.901 (4)°
Mr = 1630.41V = 1251.8 (3) Å3
Triclinic, P1Z = 1
a = 10.1546 (12) ÅMo Kα radiation
b = 11.2503 (15) ŵ = 2.12 mm1
c = 12.2583 (11) ÅT = 292 K
α = 74.822 (4)°0.09 × 0.03 × 0.01 mm
β = 74.551 (4)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
5658 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2005)
4317 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.980Rint = 0.033
12802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.27 e Å3
5658 reflectionsΔρmin = 0.67 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.05951 (4)0.05788 (4)0.17540 (3)0.01997 (11)
Nb20.12641 (4)0.09688 (4)0.02789 (3)0.02059 (11)
Nb30.16910 (4)0.16257 (4)0.00454 (3)0.02023 (11)
Cl10.07844 (13)0.04608 (12)0.24031 (9)0.0284 (3)
Cl20.21978 (13)0.18172 (12)0.17345 (9)0.0287 (3)
Cl30.13104 (13)0.25848 (12)0.20287 (9)0.0292 (3)
Cl40.34951 (12)0.07792 (12)0.02471 (10)0.0281 (3)
Cl50.26992 (13)0.12353 (12)0.21349 (9)0.0291 (3)
Cl60.05053 (13)0.30764 (11)0.03363 (10)0.0296 (3)
Cl70.60972 (12)0.58291 (11)0.10687 (10)0.0271 (3)
O10.1228 (4)0.1230 (4)0.3636 (3)0.0325 (9)
H110.166 (6)0.073 (4)0.405 (4)0.050*
H120.081 (6)0.193 (3)0.398 (4)0.050*
O20.2633 (4)0.1996 (4)0.0585 (3)0.0365 (9)
H210.293 (6)0.256 (4)0.007 (4)0.050*
H220.273 (6)0.199 (6)0.124 (3)0.050*
O30.3507 (4)0.3380 (4)0.0101 (3)0.0358 (9)
H310.419 (4)0.352 (6)0.020 (5)0.050*
H320.366 (6)0.409 (3)0.025 (5)0.050*
C10.0201 (6)0.5308 (5)0.5375 (4)0.0294 (11)
C20.0892 (7)0.4576 (5)0.6265 (5)0.0450 (15)
H2A0.11250.36860.63910.054*
C30.1234 (7)0.5165 (6)0.6966 (5)0.0495 (17)
H3A0.17110.46830.75570.059*
C40.0850 (7)0.6487 (6)0.6768 (4)0.0459 (16)
H4A0.10320.69180.72390.055*
C50.0192 (6)0.7150 (5)0.5852 (4)0.0372 (13)
H5A0.00410.80410.57070.045*
C60.6446 (5)0.8338 (5)0.6499 (4)0.0314 (12)
C70.6180 (6)0.7851 (6)0.5686 (5)0.0410 (14)
H7A0.59920.83700.49860.049*
C80.6200 (7)0.6566 (6)0.5932 (5)0.0501 (16)
H8A0.60140.62140.54010.060*
C90.6496 (7)0.5826 (6)0.6966 (5)0.0496 (16)
H9A0.65250.49630.71450.059*
C100.6748 (7)0.6381 (7)0.7730 (5)0.0541 (17)
H10A0.69500.58720.84290.065*
C110.6425 (5)0.9693 (5)0.6300 (4)0.0314 (12)
C120.5788 (6)1.0426 (5)0.7150 (4)0.0346 (12)
H12A0.53391.00730.78710.041*
C130.5828 (6)1.1682 (6)0.6915 (5)0.0432 (15)
H13A0.54031.21850.74760.052*
C140.6501 (7)1.2188 (6)0.5847 (5)0.0443 (15)
H14A0.65581.30280.56730.053*
C150.7089 (7)1.1402 (6)0.5040 (5)0.0437 (15)
H15A0.75311.17460.43130.052*
N10.7066 (5)1.0187 (4)0.5234 (3)0.0359 (11)
N20.6722 (5)0.7617 (5)0.7525 (4)0.0414 (12)
N30.0133 (5)0.6592 (4)0.5160 (3)0.0311 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0216 (2)0.0203 (2)0.01567 (19)0.00330 (17)0.00408 (15)0.00234 (16)
Nb20.0217 (2)0.0208 (2)0.0192 (2)0.00501 (18)0.00606 (16)0.00265 (16)
Nb30.0207 (2)0.0193 (2)0.0183 (2)0.00151 (17)0.00530 (16)0.00344 (16)
Cl10.0334 (7)0.0329 (7)0.0213 (5)0.0087 (6)0.0094 (5)0.0056 (5)
Cl20.0303 (6)0.0316 (7)0.0239 (5)0.0135 (5)0.0042 (5)0.0004 (5)
Cl30.0327 (7)0.0246 (6)0.0221 (5)0.0001 (5)0.0073 (5)0.0010 (5)
Cl40.0217 (6)0.0306 (7)0.0318 (6)0.0036 (5)0.0092 (5)0.0061 (5)
Cl50.0276 (6)0.0309 (7)0.0210 (5)0.0003 (5)0.0015 (5)0.0060 (5)
Cl60.0329 (7)0.0225 (6)0.0343 (6)0.0033 (5)0.0112 (5)0.0079 (5)
Cl70.0272 (6)0.0224 (6)0.0354 (6)0.0065 (5)0.0115 (5)0.0072 (5)
O10.042 (2)0.029 (2)0.0191 (17)0.0037 (18)0.0038 (15)0.0014 (15)
O20.046 (2)0.039 (2)0.033 (2)0.0216 (19)0.0153 (19)0.0011 (18)
O30.032 (2)0.028 (2)0.046 (2)0.0059 (18)0.0176 (17)0.0123 (18)
C10.037 (3)0.028 (3)0.023 (2)0.010 (2)0.006 (2)0.001 (2)
C20.078 (5)0.027 (3)0.041 (3)0.017 (3)0.033 (3)0.002 (2)
C30.079 (5)0.036 (4)0.043 (3)0.019 (3)0.042 (3)0.009 (3)
C40.076 (5)0.041 (4)0.032 (3)0.021 (3)0.024 (3)0.007 (3)
C50.053 (4)0.026 (3)0.035 (3)0.008 (3)0.015 (3)0.006 (2)
C60.027 (3)0.040 (3)0.025 (2)0.008 (2)0.002 (2)0.007 (2)
C70.037 (3)0.050 (4)0.038 (3)0.017 (3)0.008 (2)0.004 (3)
C80.051 (4)0.053 (4)0.051 (4)0.016 (3)0.012 (3)0.014 (3)
C90.057 (4)0.033 (3)0.059 (4)0.016 (3)0.017 (3)0.000 (3)
C100.067 (5)0.054 (4)0.039 (3)0.021 (4)0.013 (3)0.003 (3)
C110.027 (3)0.035 (3)0.027 (2)0.002 (2)0.007 (2)0.003 (2)
C120.034 (3)0.040 (3)0.029 (3)0.006 (3)0.008 (2)0.009 (2)
C130.039 (3)0.048 (4)0.045 (3)0.002 (3)0.015 (3)0.024 (3)
C140.064 (4)0.035 (3)0.039 (3)0.018 (3)0.013 (3)0.007 (3)
C150.056 (4)0.046 (4)0.031 (3)0.021 (3)0.005 (3)0.005 (3)
N10.043 (3)0.036 (3)0.029 (2)0.012 (2)0.006 (2)0.008 (2)
N20.048 (3)0.043 (3)0.032 (2)0.013 (2)0.013 (2)0.001 (2)
N30.040 (3)0.028 (2)0.028 (2)0.010 (2)0.0113 (19)0.0035 (18)
Geometric parameters (Å, º) top
Nb1—Nb2i2.9213 (6)C1—C1ii1.486 (10)
Nb1—Nb22.9239 (6)C1—C21.386 (7)
Nb1—Nb32.9128 (6)C1—N31.341 (6)
Nb1—Nb3i2.9141 (6)C2—H2A0.9300
Nb1—Cl12.4731 (13)C2—C31.380 (8)
Nb1—Cl22.4724 (13)C3—H3A0.9300
Nb1—Cl32.4581 (13)C3—C41.380 (8)
Nb1—Cl52.4622 (12)C4—H4A0.9300
Nb1—O12.214 (3)C4—C51.378 (7)
Nb2—Nb1i2.9213 (6)C5—H5A0.9300
Nb2—Nb3i2.9204 (7)C5—N31.337 (6)
Nb2—Nb32.9246 (7)C6—C71.375 (7)
Nb2—Cl12.4641 (12)C6—C111.474 (7)
Nb2—Cl2i2.4522 (12)C6—N21.350 (6)
Nb2—Cl42.4656 (13)C7—H7A0.9300
Nb2—Cl62.4673 (13)C7—C81.392 (8)
Nb2—O22.228 (4)C8—H8A0.9300
Nb3—Nb1i2.9141 (6)C8—C91.370 (8)
Nb3—Nb2i2.9204 (7)C9—H9A0.9300
Nb3—Cl32.4679 (12)C9—C101.368 (9)
Nb3—Cl42.4621 (13)C10—H10A0.9300
Nb3—Cl5i2.4719 (11)C10—N21.339 (8)
Nb3—Cl6i2.4619 (13)C11—C121.388 (7)
Nb3—O32.219 (4)C11—N11.358 (6)
Cl2—Nb2i2.4522 (12)C12—H12A0.9300
Cl5—Nb3i2.4719 (11)C12—C131.379 (8)
Cl6—Nb3i2.4619 (13)C13—H13A0.9300
O1—H110.80 (4)C13—C141.376 (8)
O1—H120.83 (4)C14—H14A0.9300
O2—H210.84 (5)C14—C151.383 (8)
O2—H220.83 (4)C15—H15A0.9300
O3—H310.82 (5)C15—N11.332 (7)
O3—H320.82 (4)
Nb2i—Nb1—Nb290.354 (17)Cl4—Nb3—Nb253.65 (3)
Nb3—Nb1—Nb2i60.075 (15)Cl4—Nb3—Cl388.63 (4)
Nb3i—Nb1—Nb2i60.157 (16)Cl4—Nb3—Cl5i88.04 (4)
Nb3—Nb1—Nb260.141 (16)Cl5i—Nb3—Nb1143.65 (3)
Nb3i—Nb1—Nb260.031 (16)Cl5i—Nb3—Nb1i53.65 (3)
Nb3—Nb1—Nb3i89.996 (17)Cl5i—Nb3—Nb2i96.02 (3)
Cl1—Nb1—Nb2i143.90 (3)Cl5i—Nb3—Nb296.13 (3)
Cl1—Nb1—Nb253.54 (3)Cl6i—Nb3—Nb195.42 (3)
Cl1—Nb1—Nb396.25 (3)Cl6i—Nb3—Nb1i97.23 (3)
Cl1—Nb1—Nb3i96.02 (3)Cl6i—Nb3—Nb2i53.75 (3)
Cl2—Nb1—Nb2i53.30 (3)Cl6i—Nb3—Nb2144.08 (3)
Cl2—Nb1—Nb2143.65 (3)Cl6i—Nb3—Cl388.24 (4)
Cl2—Nb1—Nb396.07 (3)Cl6i—Nb3—Cl4162.25 (4)
Cl2—Nb1—Nb3i95.92 (3)Cl6i—Nb3—Cl5i89.79 (4)
Cl2—Nb1—Cl1162.81 (4)O3—Nb3—Nb1135.15 (10)
Cl3—Nb1—Nb2i96.81 (3)O3—Nb3—Nb1i134.84 (10)
Cl3—Nb1—Nb295.73 (3)O3—Nb3—Nb2i134.47 (11)
Cl3—Nb1—Nb353.91 (3)O3—Nb3—Nb2135.17 (11)
Cl3—Nb1—Nb3i143.89 (3)O3—Nb3—Cl381.57 (10)
Cl3—Nb1—Cl187.99 (4)O3—Nb3—Cl481.53 (11)
Cl3—Nb1—Cl289.62 (5)O3—Nb3—Cl5i81.20 (10)
Cl3—Nb1—Cl5162.12 (4)O3—Nb3—Cl6i80.73 (11)
Cl5—Nb1—Nb2i96.43 (3)Nb2—Cl1—Nb172.63 (3)
Cl5—Nb1—Nb296.15 (3)Nb2i—Cl2—Nb172.77 (3)
Cl5—Nb1—Nb3143.95 (3)Nb1—Cl3—Nb372.50 (3)
Cl5—Nb1—Nb3i53.95 (3)Nb3—Cl4—Nb272.81 (4)
Cl5—Nb1—Cl188.38 (4)Nb1—Cl5—Nb3i72.40 (3)
Cl5—Nb1—Cl288.70 (5)Nb3i—Cl6—Nb272.66 (4)
O1—Nb1—Nb2i134.23 (11)Nb1—O1—H11121 (4)
O1—Nb1—Nb2135.41 (11)Nb1—O1—H12122 (4)
O1—Nb1—Nb3134.36 (10)H11—O1—H12113 (6)
O1—Nb1—Nb3i135.64 (10)Nb2—O2—H21122 (4)
O1—Nb1—Cl181.88 (11)Nb2—O2—H22123 (4)
O1—Nb1—Cl280.94 (11)H21—O2—H22113 (6)
O1—Nb1—Cl380.47 (10)Nb3—O3—H31123 (4)
O1—Nb1—Cl581.69 (10)Nb3—O3—H32136 (4)
Nb1i—Nb2—Nb189.646 (17)H31—O3—H32100 (6)
Nb1i—Nb2—Nb359.800 (14)C2—C1—C1ii120.9 (6)
Nb1—Nb2—Nb359.742 (15)N3—C1—C1ii117.6 (5)
Nb3i—Nb2—Nb1i59.819 (14)N3—C1—C2121.5 (5)
Nb3i—Nb2—Nb159.818 (15)C1—C2—H2A120.0
Nb3i—Nb2—Nb389.642 (17)C3—C2—C1120.1 (5)
Cl1—Nb2—Nb1i143.47 (3)C3—C2—H2A120.0
Cl1—Nb2—Nb153.83 (3)C2—C3—H3A120.8
Cl1—Nb2—Nb3i96.07 (3)C4—C3—C2118.5 (5)
Cl1—Nb2—Nb396.15 (3)C4—C3—H3A120.8
Cl1—Nb2—Cl489.52 (4)C3—C4—H4A120.9
Cl1—Nb2—Cl689.89 (4)C5—C4—C3118.2 (5)
Cl2i—Nb2—Nb1i53.94 (3)C5—C4—H4A120.9
Cl2i—Nb2—Nb1143.58 (3)C4—C5—H5A118.0
Cl2i—Nb2—Nb3i96.33 (3)N3—C5—C4124.0 (5)
Cl2i—Nb2—Nb396.11 (3)N3—C5—H5A118.0
Cl2i—Nb2—Cl1162.59 (5)C7—C6—C11121.4 (5)
Cl2i—Nb2—Cl487.86 (4)N2—C6—C7122.5 (5)
Cl2i—Nb2—Cl687.68 (4)N2—C6—C11116.1 (5)
Cl4—Nb2—Nb1i95.39 (3)C6—C7—H7A120.7
Cl4—Nb2—Nb196.38 (3)C6—C7—C8118.6 (5)
Cl4—Nb2—Nb3i143.17 (3)C8—C7—H7A120.7
Cl4—Nb2—Nb353.54 (3)C7—C8—H8A120.4
Cl4—Nb2—Cl6163.14 (5)C9—C8—C7119.2 (6)
Cl6—Nb2—Nb1i95.09 (3)C9—C8—H8A120.4
Cl6—Nb2—Nb196.85 (3)C8—C9—H9A120.7
Cl6—Nb2—Nb3i53.58 (3)C10—C9—C8118.7 (6)
Cl6—Nb2—Nb3143.20 (4)C10—C9—H9A120.7
O2—Nb2—Nb1i135.36 (9)C9—C10—H10A118.2
O2—Nb2—Nb1134.99 (9)N2—C10—C9123.6 (6)
O2—Nb2—Nb3i135.54 (11)N2—C10—H10A118.2
O2—Nb2—Nb3134.82 (11)C12—C11—C6122.1 (5)
O2—Nb2—Cl181.17 (10)N1—C11—C6116.1 (4)
O2—Nb2—Cl2i81.42 (10)N1—C11—C12121.8 (5)
O2—Nb2—Cl481.29 (11)C11—C12—H12A120.4
O2—Nb2—Cl681.97 (11)C13—C12—C11119.2 (5)
Nb1—Nb3—Nb1i90.004 (17)C13—C12—H12A120.4
Nb1—Nb3—Nb2i60.106 (15)C12—C13—H13A120.2
Nb1i—Nb3—Nb2i60.151 (15)C14—C13—C12119.6 (5)
Nb1—Nb3—Nb260.117 (15)C14—C13—H13A120.2
Nb1i—Nb3—Nb260.043 (16)C13—C14—H14A121.2
Nb2i—Nb3—Nb290.358 (17)C13—C14—C15117.6 (6)
Cl3—Nb3—Nb153.59 (3)C15—C14—H14A121.2
Cl3—Nb3—Nb1i143.59 (3)C14—C15—H15A117.8
Cl3—Nb3—Nb2i96.61 (3)N1—C15—C14124.5 (5)
Cl3—Nb3—Nb295.50 (3)N1—C15—H15A117.8
Cl3—Nb3—Cl5i162.75 (4)C15—N1—C11117.3 (5)
Cl4—Nb3—Nb196.75 (3)C10—N2—C6117.4 (5)
Cl4—Nb3—Nb1i95.65 (3)C5—N3—C1117.8 (4)
Cl4—Nb3—Nb2i144.00 (3)
N3—C1—C1ii—N3ii180.000 (1)N1—C11—C6—N2137.9 (5)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N1iii0.80 (4)1.94 (5)2.720 (5)167 (6)
O1—H12···N3iv0.83 (4)1.96 (2)2.768 (5)165 (6)
O2—H21···Cl7v0.84 (5)2.31 (5)3.136 (4)170 (6)
O2—H22···N2vi0.83 (4)1.93 (3)2.740 (6)162 (6)
O3—H31···Cl7iv0.82 (5)2.27 (5)3.095 (4)172 (6)
O3—H32···Cl7vii0.82 (4)2.34 (2)3.145 (4)167 (6)
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x1, y1, z1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Nb6Cl12(H2O)6]Cl2·3C10H8N2
Mr1630.41
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)10.1546 (12), 11.2503 (15), 12.2583 (11)
α, β, γ (°)74.822 (4), 74.551 (4), 70.901 (4)
V3)1251.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.09 × 0.03 × 0.01
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2005)
Tmin, Tmax0.871, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12802, 5658, 4317
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.02
No. of reflections5658
No. of parameters298
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 0.67

Computer programs: APEX2 (Bruker, 2005), APEX2, SHELXTL (Bruker, 2005), SHELXTL, local programs.

Selected geometric parameters (Å, º) top
Nb1—Nb2i2.9213 (6)Nb2—Cl12.4641 (12)
Nb1—Nb22.9239 (6)Nb2—Cl2i2.4522 (12)
Nb1—Nb32.9128 (6)Nb2—Cl42.4656 (13)
Nb1—Nb3i2.9141 (6)Nb2—Cl62.4673 (13)
Nb1—Cl12.4731 (13)Nb2—O22.228 (4)
Nb1—Cl22.4724 (13)Nb3—Cl32.4679 (12)
Nb1—Cl32.4581 (13)Nb3—Cl42.4621 (13)
Nb1—Cl52.4622 (12)Nb3—Cl5i2.4719 (11)
Nb1—O12.214 (3)Nb3—Cl6i2.4619 (13)
Nb2—Nb3i2.9204 (7)Nb3—O32.219 (4)
Nb2—Nb32.9246 (7)
Cl1—Nb1—Nb2i143.90 (3)Cl6—Nb2—Nb196.85 (3)
Cl1—Nb1—Nb253.54 (3)Cl6—Nb2—Nb3i53.58 (3)
Cl1—Nb1—Nb396.25 (3)Cl6—Nb2—Nb3143.20 (4)
Cl1—Nb1—Nb3i96.02 (3)O2—Nb2—Nb1i135.36 (9)
Cl2—Nb1—Nb2i53.30 (3)O2—Nb2—Nb1134.99 (9)
Cl2—Nb1—Nb2143.65 (3)O2—Nb2—Nb3i135.54 (11)
Cl2—Nb1—Nb396.07 (3)O2—Nb2—Nb3134.82 (11)
Cl2—Nb1—Nb3i95.92 (3)Cl3—Nb3—Nb153.59 (3)
Cl3—Nb1—Nb2i96.81 (3)Cl3—Nb3—Nb1i143.59 (3)
Cl3—Nb1—Nb295.73 (3)Cl3—Nb3—Nb2i96.61 (3)
Cl3—Nb1—Nb353.91 (3)Cl3—Nb3—Nb295.50 (3)
Cl3—Nb1—Nb3i143.89 (3)Cl4—Nb3—Nb196.75 (3)
Cl5—Nb1—Nb2i96.43 (3)Cl4—Nb3—Nb1i95.65 (3)
Cl5—Nb1—Nb296.15 (3)Cl4—Nb3—Nb2i144.00 (3)
Cl5—Nb1—Nb3143.95 (3)Cl4—Nb3—Nb253.65 (3)
Cl5—Nb1—Nb3i53.95 (3)Cl5i—Nb3—Nb1143.65 (3)
O1—Nb1—Nb2i134.23 (11)Cl5i—Nb3—Nb1i53.65 (3)
O1—Nb1—Nb2135.41 (11)Cl5i—Nb3—Nb2i96.02 (3)
O1—Nb1—Nb3134.36 (10)Cl5i—Nb3—Nb296.13 (3)
O1—Nb1—Nb3i135.64 (10)Cl6i—Nb3—Nb195.42 (3)
Cl1—Nb2—Nb1i143.47 (3)Cl6i—Nb3—Nb1i97.23 (3)
Cl1—Nb2—Nb153.83 (3)Cl6i—Nb3—Nb2i53.75 (3)
Cl1—Nb2—Nb3i96.07 (3)Cl6i—Nb3—Nb2144.08 (3)
Cl1—Nb2—Nb396.15 (3)O3—Nb3—Nb1135.15 (10)
Cl2i—Nb2—Nb1i53.94 (3)O3—Nb3—Nb1i134.84 (10)
Cl2i—Nb2—Nb1143.58 (3)O3—Nb3—Nb2i134.47 (11)
Cl2i—Nb2—Nb3i96.33 (3)O3—Nb3—Nb2135.17 (11)
Cl2i—Nb2—Nb396.11 (3)Nb2—Cl1—Nb172.63 (3)
Cl4—Nb2—Nb1i95.39 (3)Nb2i—Cl2—Nb172.77 (3)
Cl4—Nb2—Nb196.38 (3)Nb1—Cl3—Nb372.50 (3)
Cl4—Nb2—Nb3i143.17 (3)Nb3—Cl4—Nb272.81 (4)
Cl4—Nb2—Nb353.54 (3)Nb1—Cl5—Nb3i72.40 (3)
Cl6—Nb2—Nb1i95.09 (3)Nb3i—Cl6—Nb272.66 (4)
N3—C1—C1ii—N3ii180.000 (1)N1—C11—C6—N2137.9 (5)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N1iii0.80 (4)1.94 (5)2.720 (5)167 (6)
O1—H12···N3iv0.83 (4)1.96 (2)2.768 (5)165 (6)
O2—H21···Cl7v0.84 (5)2.31 (5)3.136 (4)170 (6)
O2—H22···N2vi0.83 (4)1.93 (3)2.740 (6)162 (6)
O3—H31···Cl7iv0.82 (5)2.27 (5)3.095 (4)172 (6)
O3—H32···Cl7vii0.82 (4)2.34 (2)3.145 (4)167 (6)
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x1, y1, z1; (vii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds