Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The single-crystal X-ray diffraction analysis of 2-{[(4-nitrophenoxy)sulfonyl]oxy}phenyl 4-nitrophenyl sulfate (4) reveals that an interesting intermolecular or extended structure (a one-dimensional hydrogen-bonded polymer) is formed because of pairs of intermolecular (aryl)C—H...O(nitro) hydrogen bonds between the C2 symmetry monomer units. The axis of the hydrogen-bonded polymer runs co-linear with the [101] face diagonal of the monoclinic unit cell. Molecular mechanics calculations using a modified version of the MM+ force field and a random conformational search algorithm have been used to locate the important low-energy in vacuo conformations of (4). The MM-calculated conformation of (4) that most closely matches the X-ray structure lies some 26.5 kJ mol−1 higher in energy than the global minimum-energy conformation, consistent with the notion that the crystallographically observed molecular architecture of (4) is a local energy minimum in the absence of its crystal lattice environment. Since the X-ray conformation of (4) was correctly calculated only when all of the neighbouring molecules in the crystal lattice were included in the simulation, hydrogen bonding and other non-bonded interactions in the crystal lattice clearly dictate the experimentally observed conformation of (4). Quantum chemical calculations (AM1 method) confirm the critical role played by the intermolecular (aryl)C—H...O(nitro) hydrogen bonds in controlling the crystallographically observed conformation of (4) and show that self-recognition in this system by hydrogen bonding is favoured on electrostatic grounds. Collectively, the molecular simulations suggest that because the lowest-energy molecular conformation of (4) does not permit the formation of an extended hydrogen-bonded `supramolecular' structure, it is not the preferred conformation in the crystalline solid state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768104019846/de5007sup1.cif
Contains datablock lynette2

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768104019846/de5007sup2.fcf
Contains datablock lynette2

CCDC reference: 255120

Computing details top

Data collection: CrysAlis CCD 170 (Oxford Diffraction,2002); cell refinement: CrysAlis CCD 170 (Oxford Diffraction,2002); data reduction: CrysAlis RED 170 (Oxford Diffraction,2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
2-{[(4-nitrophenoxy)sulfonyl]oxy}phenyl 4-nitrophenyl sulfate top
Crystal data top
C18H12N2O10S2F(000) = 984
Mr = 480.42Dx = 1.680 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 105 reflections
a = 11.667 (11) Åθ = 4–32°
b = 10.803 (11) ŵ = 0.35 mm1
c = 15.868 (16) ÅT = 100 K
β = 108.20 (9)°Plate, colorless
V = 1900 (3) Å30.50 × 0.40 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
3744 independent reflections
Radiation source: fine-focus sealed tube3259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω–2θ scansθmax = 34.1°, θmin = 4.6°
Absorption correction: multi-scan
[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]
h = 1818
Tmin = 0.846, Tmax = 0.966k = 1616
38881 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.116All H-atom parameters refined
S = 1.15 w = 1/[σ2(Fo2) + (0.049P)2 + 2.7297P]
where P = (Fo2 + 2Fc2)/3
3744 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C18H12N2O10S2V = 1900 (3) Å3
Mr = 480.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.667 (11) ŵ = 0.35 mm1
b = 10.803 (11) ÅT = 100 K
c = 15.868 (16) Å0.50 × 0.40 × 0.10 mm
β = 108.20 (9)°
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
3744 independent reflections
Absorption correction: multi-scan
[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]
3259 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.966Rint = 0.038
38881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.15Δρmax = 0.52 e Å3
3744 reflectionsΔρmin = 0.45 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms were cleanly located by difference Fourier synthesis and refined isotropically without restraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.154 (2)0.819 (2)0.0184 (15)0.031 (5)*
H30.252 (2)0.937 (2)0.0687 (16)0.039 (6)*
H50.398 (2)1.161 (2)0.1430 (15)0.034 (6)*
H60.313 (2)1.038 (2)0.2323 (15)0.033 (6)*
H80.044 (2)1.113 (2)0.1134 (15)0.032 (6)*
H90.0217 (19)1.306 (2)0.1819 (14)0.027 (5)*
C10.22656 (11)0.91878 (11)0.13181 (8)0.0153 (2)
C20.20539 (12)0.88710 (12)0.04331 (9)0.0191 (2)
C30.26129 (13)0.95543 (13)0.00709 (9)0.0208 (2)
C40.33125 (11)1.05558 (13)0.03261 (9)0.0191 (2)
C50.35078 (12)1.09010 (13)0.11985 (10)0.0209 (2)
C60.29900 (12)1.01842 (12)0.17140 (9)0.0187 (2)
C70.01307 (11)1.00559 (11)0.21010 (8)0.0150 (2)
C80.02508 (12)1.11599 (12)0.16954 (9)0.0195 (2)
C90.01233 (13)1.22755 (13)0.21008 (10)0.0226 (3)
N10.39164 (11)1.12738 (13)0.02011 (9)0.0252 (2)
O10.42353 (11)1.07070 (13)0.07604 (8)0.0340 (3)
O20.40623 (13)1.23840 (12)0.00470 (9)0.0373 (3)
O30.21499 (9)0.85264 (10)0.28683 (6)0.02118 (19)
O40.13349 (9)0.70950 (9)0.16017 (7)0.02152 (19)
O50.02323 (8)0.89236 (9)0.16955 (6)0.01697 (17)
S10.15557 (3)0.83196 (3)0.19503 (2)0.01558 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (5)0.0166 (5)0.0175 (5)0.0004 (4)0.0076 (4)0.0010 (4)
C20.0197 (6)0.0208 (5)0.0174 (5)0.0034 (4)0.0066 (4)0.0024 (4)
C30.0198 (6)0.0266 (6)0.0165 (5)0.0011 (5)0.0064 (4)0.0002 (4)
C40.0142 (5)0.0221 (5)0.0219 (5)0.0006 (4)0.0070 (4)0.0050 (4)
C50.0180 (6)0.0204 (5)0.0252 (6)0.0043 (4)0.0083 (5)0.0015 (4)
C60.0172 (5)0.0205 (5)0.0200 (5)0.0046 (4)0.0080 (4)0.0051 (4)
C70.0112 (5)0.0186 (5)0.0158 (5)0.0006 (4)0.0050 (4)0.0004 (4)
C80.0163 (5)0.0224 (6)0.0217 (6)0.0007 (4)0.0089 (4)0.0035 (4)
C90.0189 (6)0.0186 (5)0.0326 (7)0.0004 (4)0.0115 (5)0.0026 (5)
N10.0156 (5)0.0351 (6)0.0244 (6)0.0016 (4)0.0054 (4)0.0117 (5)
O10.0254 (5)0.0512 (7)0.0303 (6)0.0108 (5)0.0160 (5)0.0182 (5)
O20.0379 (7)0.0361 (6)0.0343 (6)0.0160 (5)0.0062 (5)0.0109 (5)
O30.0169 (4)0.0305 (5)0.0161 (4)0.0005 (4)0.0050 (3)0.0019 (3)
O40.0238 (5)0.0161 (4)0.0268 (5)0.0015 (3)0.0110 (4)0.0003 (3)
O50.0132 (4)0.0207 (4)0.0182 (4)0.0010 (3)0.0066 (3)0.0030 (3)
S10.01401 (14)0.01714 (14)0.01688 (14)0.00016 (9)0.00667 (10)0.00053 (9)
Geometric parameters (Å, º) top
C1—C21.391 (2)C7—C81.383 (2)
C1—C61.391 (2)C7—C7i1.392 (3)
C1—S11.7581 (17)C7—O51.4042 (19)
C2—C31.391 (2)C8—C91.396 (2)
C2—H20.95 (2)C8—H80.98 (2)
C3—C41.383 (2)C9—C9i1.384 (3)
C3—H30.97 (2)C9—H90.98 (2)
C4—C51.382 (2)N1—O21.225 (2)
C4—N11.472 (2)N1—O11.228 (2)
C5—C61.394 (2)O3—S11.4219 (19)
C5—H50.95 (2)O4—S11.4259 (16)
C6—H60.95 (2)O5—S11.6072 (17)
C2—C1—C6122.52 (12)C8—C7—O5120.17 (13)
C2—C1—S1118.56 (11)C7i—C7—O5119.38 (7)
C6—C1—S1118.89 (11)C7—C8—C9119.29 (14)
C1—C2—C3118.86 (13)C7—C8—H8118.2 (13)
C1—C2—H2119.8 (13)C9—C8—H8122.5 (13)
C3—C2—H2121.3 (13)C9i—C9—C8120.29 (9)
C4—C3—C2117.98 (13)C9i—C9—H9120.1 (12)
C4—C3—H3118.8 (14)C8—C9—H9119.6 (12)
C2—C3—H3123.2 (14)O2—N1—O1125.30 (14)
C5—C4—C3123.82 (13)O2—N1—C4117.63 (14)
C5—C4—N1117.95 (14)O1—N1—C4117.06 (15)
C3—C4—N1118.20 (13)C7—O5—S1116.77 (9)
C4—C5—C6118.15 (13)O3—S1—O4120.95 (7)
C4—C5—H5119.9 (14)O3—S1—O5108.45 (10)
C6—C5—H5122.0 (14)O4—S1—O5103.66 (8)
C1—C6—C5118.58 (13)O3—S1—C1109.57 (9)
C1—C6—H6121.2 (14)O4—S1—C1109.51 (8)
C5—C6—H6120.3 (14)O5—S1—C1103.10 (8)
C8—C7—C7i120.41 (8)
C6—C1—C2—C31.8 (2)C3—C4—N1—O2148.12 (14)
S1—C1—C2—C3180.00 (10)C5—C4—N1—O1146.11 (14)
C1—C2—C3—C42.9 (2)C3—C4—N1—O132.00 (18)
C2—C3—C4—C51.4 (2)C8—C7—O5—S190.88 (15)
C2—C3—C4—N1179.36 (12)C7i—C7—O5—S191.21 (17)
C3—C4—C5—C61.3 (2)C7—O5—S1—O338.27 (10)
N1—C4—C5—C6176.65 (12)C7—O5—S1—O4167.99 (9)
C2—C1—C6—C50.9 (2)C7—O5—S1—C177.84 (12)
S1—C1—C6—C5177.26 (10)C2—C1—S1—O3162.48 (11)
C4—C5—C6—C12.5 (2)C6—C1—S1—O319.24 (12)
C7i—C7—C8—C90.9 (2)C2—C1—S1—O427.66 (13)
O5—C7—C8—C9178.75 (12)C6—C1—S1—O4154.07 (11)
C7—C8—C9—C9i0.1 (2)C2—C1—S1—O582.20 (14)
C5—C4—N1—O233.77 (19)C6—C1—S1—O596.07 (14)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12N2O10S2
Mr480.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)11.667 (11), 10.803 (11), 15.868 (16)
β (°) 108.20 (9)
V3)1900 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.50 × 0.40 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
diffractometer
Absorption correctionMulti-scan
[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]
Tmin, Tmax0.846, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
38881, 3744, 3259
Rint0.038
(sin θ/λ)max1)0.788
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 1.15
No. of reflections3744
No. of parameters169
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.52, 0.45

Computer programs: CrysAlis CCD 170 (Oxford Diffraction,2002), CrysAlis RED 170 (Oxford Diffraction,2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999).

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds