Buy article online - an online subscription or single-article purchase is required to access this article.
The single-crystal X-ray diffraction analysis of 2-{[(4-nitrophenoxy)sulfonyl]oxy}phenyl 4-nitrophenyl sulfate (4) reveals that an interesting intermolecular or extended structure (a one-dimensional hydrogen-bonded polymer) is formed because of pairs of intermolecular (aryl)C—H
O(nitro) hydrogen bonds between the
C2 symmetry monomer units. The axis of the hydrogen-bonded polymer runs co-linear with the [101] face diagonal of the monoclinic unit cell. Molecular mechanics calculations using a modified version of the
MM+ force field and a random conformational search algorithm have been used to locate the important low-energy
in vacuo conformations of (4). The
MM-calculated conformation of (4) that most closely matches the X-ray structure lies some 26.5 kJ mol
−1 higher in energy than the global minimum-energy conformation, consistent with the notion that the crystallographically observed molecular architecture of (4) is a local energy minimum in the absence of its crystal lattice environment. Since the X-ray conformation of (4) was correctly calculated only when all of the neighbouring molecules in the crystal lattice were included in the simulation, hydrogen bonding and other non-bonded interactions in the crystal lattice clearly dictate the experimentally observed conformation of (4). Quantum chemical calculations (
AM1 method) confirm the critical role played by the intermolecular (aryl)C—H
O(nitro) hydrogen bonds in controlling the crystallographically observed conformation of (4) and show that self-recognition in this system by hydrogen bonding is favoured on electrostatic grounds. Collectively, the molecular simulations suggest that because the lowest-energy
molecular conformation of (4) does not permit the formation of an extended hydrogen-bonded `supramolecular' structure, it is not the preferred conformation in the crystalline solid state.
Supporting information
CCDC reference: 255120
Data collection: CrysAlis CCD 170 (Oxford Diffraction,2002); cell refinement: CrysAlis CCD 170 (Oxford Diffraction,2002); data reduction: CrysAlis RED 170 (Oxford Diffraction,2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).
2-{[(4-nitrophenoxy)sulfonyl]oxy}phenyl 4-nitrophenyl sulfate
top
Crystal data top
C18H12N2O10S2 | F(000) = 984 |
Mr = 480.42 | Dx = 1.680 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 105 reflections |
a = 11.667 (11) Å | θ = 4–32° |
b = 10.803 (11) Å | µ = 0.35 mm−1 |
c = 15.868 (16) Å | T = 100 K |
β = 108.20 (9)° | Plate, colorless |
V = 1900 (3) Å3 | 0.50 × 0.40 × 0.10 mm |
Z = 4 | |
Data collection top
Oxford Diffraction Xcalibur 2 CCD diffractometer | 3744 independent reflections |
Radiation source: fine-focus sealed tube | 3259 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω–2θ scans | θmax = 34.1°, θmin = 4.6° |
Absorption correction: multi-scan [c.f. r.h. blessing, acta cryst. (1995), a51, 33-38] | h = −18→18 |
Tmin = 0.846, Tmax = 0.966 | k = −16→16 |
38881 measured reflections | l = −24→24 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.116 | All H-atom parameters refined |
S = 1.15 | w = 1/[σ2(Fo2) + (0.049P)2 + 2.7297P] where P = (Fo2 + 2Fc2)/3 |
3744 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Crystal data top
C18H12N2O10S2 | V = 1900 (3) Å3 |
Mr = 480.42 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.667 (11) Å | µ = 0.35 mm−1 |
b = 10.803 (11) Å | T = 100 K |
c = 15.868 (16) Å | 0.50 × 0.40 × 0.10 mm |
β = 108.20 (9)° | |
Data collection top
Oxford Diffraction Xcalibur 2 CCD diffractometer | 3744 independent reflections |
Absorption correction: multi-scan [c.f. r.h. blessing, acta cryst. (1995), a51, 33-38] | 3259 reflections with I > 2σ(I) |
Tmin = 0.846, Tmax = 0.966 | Rint = 0.038 |
38881 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.116 | All H-atom parameters refined |
S = 1.15 | Δρmax = 0.52 e Å−3 |
3744 reflections | Δρmin = −0.45 e Å−3 |
169 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were cleanly located by difference Fourier synthesis and refined isotropically without restraints. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
H2 | 0.154 (2) | 0.819 (2) | 0.0184 (15) | 0.031 (5)* | |
H3 | 0.252 (2) | 0.937 (2) | −0.0687 (16) | 0.039 (6)* | |
H5 | 0.398 (2) | 1.161 (2) | 0.1430 (15) | 0.034 (6)* | |
H6 | 0.313 (2) | 1.038 (2) | 0.2323 (15) | 0.033 (6)* | |
H8 | 0.044 (2) | 1.113 (2) | 0.1134 (15) | 0.032 (6)* | |
H9 | 0.0217 (19) | 1.306 (2) | 0.1819 (14) | 0.027 (5)* | |
C1 | 0.22656 (11) | 0.91878 (11) | 0.13181 (8) | 0.0153 (2) | |
C2 | 0.20539 (12) | 0.88710 (12) | 0.04331 (9) | 0.0191 (2) | |
C3 | 0.26129 (13) | 0.95543 (13) | −0.00709 (9) | 0.0208 (2) | |
C4 | 0.33125 (11) | 1.05558 (13) | 0.03261 (9) | 0.0191 (2) | |
C5 | 0.35078 (12) | 1.09010 (13) | 0.11985 (10) | 0.0209 (2) | |
C6 | 0.29900 (12) | 1.01842 (12) | 0.17140 (9) | 0.0187 (2) | |
C7 | 0.01307 (11) | 1.00559 (11) | 0.21010 (8) | 0.0150 (2) | |
C8 | 0.02508 (12) | 1.11599 (12) | 0.16954 (9) | 0.0195 (2) | |
C9 | 0.01233 (13) | 1.22755 (13) | 0.21008 (10) | 0.0226 (3) | |
N1 | 0.39164 (11) | 1.12738 (13) | −0.02011 (9) | 0.0252 (2) | |
O1 | 0.42353 (11) | 1.07070 (13) | −0.07604 (8) | 0.0340 (3) | |
O2 | 0.40623 (13) | 1.23840 (12) | −0.00470 (9) | 0.0373 (3) | |
O3 | 0.21499 (9) | 0.85264 (10) | 0.28683 (6) | 0.02118 (19) | |
O4 | 0.13349 (9) | 0.70950 (9) | 0.16017 (7) | 0.02152 (19) | |
O5 | 0.02323 (8) | 0.89236 (9) | 0.16955 (6) | 0.01697 (17) | |
S1 | 0.15557 (3) | 0.83196 (3) | 0.19503 (2) | 0.01558 (9) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0137 (5) | 0.0166 (5) | 0.0175 (5) | −0.0004 (4) | 0.0076 (4) | −0.0010 (4) |
C2 | 0.0197 (6) | 0.0208 (5) | 0.0174 (5) | −0.0034 (4) | 0.0066 (4) | −0.0024 (4) |
C3 | 0.0198 (6) | 0.0266 (6) | 0.0165 (5) | −0.0011 (5) | 0.0064 (4) | 0.0002 (4) |
C4 | 0.0142 (5) | 0.0221 (5) | 0.0219 (5) | 0.0006 (4) | 0.0070 (4) | 0.0050 (4) |
C5 | 0.0180 (6) | 0.0204 (5) | 0.0252 (6) | −0.0043 (4) | 0.0083 (5) | −0.0015 (4) |
C6 | 0.0172 (5) | 0.0205 (5) | 0.0200 (5) | −0.0046 (4) | 0.0080 (4) | −0.0051 (4) |
C7 | 0.0112 (5) | 0.0186 (5) | 0.0158 (5) | −0.0006 (4) | 0.0050 (4) | −0.0004 (4) |
C8 | 0.0163 (5) | 0.0224 (6) | 0.0217 (6) | 0.0007 (4) | 0.0089 (4) | 0.0035 (4) |
C9 | 0.0189 (6) | 0.0186 (5) | 0.0326 (7) | 0.0004 (4) | 0.0115 (5) | 0.0026 (5) |
N1 | 0.0156 (5) | 0.0351 (6) | 0.0244 (6) | −0.0016 (4) | 0.0054 (4) | 0.0117 (5) |
O1 | 0.0254 (5) | 0.0512 (7) | 0.0303 (6) | 0.0108 (5) | 0.0160 (5) | 0.0182 (5) |
O2 | 0.0379 (7) | 0.0361 (6) | 0.0343 (6) | −0.0160 (5) | 0.0062 (5) | 0.0109 (5) |
O3 | 0.0169 (4) | 0.0305 (5) | 0.0161 (4) | 0.0005 (4) | 0.0050 (3) | 0.0019 (3) |
O4 | 0.0238 (5) | 0.0161 (4) | 0.0268 (5) | −0.0015 (3) | 0.0110 (4) | −0.0003 (3) |
O5 | 0.0132 (4) | 0.0207 (4) | 0.0182 (4) | −0.0010 (3) | 0.0066 (3) | −0.0030 (3) |
S1 | 0.01401 (14) | 0.01714 (14) | 0.01688 (14) | −0.00016 (9) | 0.00667 (10) | 0.00053 (9) |
Geometric parameters (Å, º) top
C1—C2 | 1.391 (2) | C7—C8 | 1.383 (2) |
C1—C6 | 1.391 (2) | C7—C7i | 1.392 (3) |
C1—S1 | 1.7581 (17) | C7—O5 | 1.4042 (19) |
C2—C3 | 1.391 (2) | C8—C9 | 1.396 (2) |
C2—H2 | 0.95 (2) | C8—H8 | 0.98 (2) |
C3—C4 | 1.383 (2) | C9—C9i | 1.384 (3) |
C3—H3 | 0.97 (2) | C9—H9 | 0.98 (2) |
C4—C5 | 1.382 (2) | N1—O2 | 1.225 (2) |
C4—N1 | 1.472 (2) | N1—O1 | 1.228 (2) |
C5—C6 | 1.394 (2) | O3—S1 | 1.4219 (19) |
C5—H5 | 0.95 (2) | O4—S1 | 1.4259 (16) |
C6—H6 | 0.95 (2) | O5—S1 | 1.6072 (17) |
| | | |
C2—C1—C6 | 122.52 (12) | C8—C7—O5 | 120.17 (13) |
C2—C1—S1 | 118.56 (11) | C7i—C7—O5 | 119.38 (7) |
C6—C1—S1 | 118.89 (11) | C7—C8—C9 | 119.29 (14) |
C1—C2—C3 | 118.86 (13) | C7—C8—H8 | 118.2 (13) |
C1—C2—H2 | 119.8 (13) | C9—C8—H8 | 122.5 (13) |
C3—C2—H2 | 121.3 (13) | C9i—C9—C8 | 120.29 (9) |
C4—C3—C2 | 117.98 (13) | C9i—C9—H9 | 120.1 (12) |
C4—C3—H3 | 118.8 (14) | C8—C9—H9 | 119.6 (12) |
C2—C3—H3 | 123.2 (14) | O2—N1—O1 | 125.30 (14) |
C5—C4—C3 | 123.82 (13) | O2—N1—C4 | 117.63 (14) |
C5—C4—N1 | 117.95 (14) | O1—N1—C4 | 117.06 (15) |
C3—C4—N1 | 118.20 (13) | C7—O5—S1 | 116.77 (9) |
C4—C5—C6 | 118.15 (13) | O3—S1—O4 | 120.95 (7) |
C4—C5—H5 | 119.9 (14) | O3—S1—O5 | 108.45 (10) |
C6—C5—H5 | 122.0 (14) | O4—S1—O5 | 103.66 (8) |
C1—C6—C5 | 118.58 (13) | O3—S1—C1 | 109.57 (9) |
C1—C6—H6 | 121.2 (14) | O4—S1—C1 | 109.51 (8) |
C5—C6—H6 | 120.3 (14) | O5—S1—C1 | 103.10 (8) |
C8—C7—C7i | 120.41 (8) | | |
| | | |
C6—C1—C2—C3 | 1.8 (2) | C3—C4—N1—O2 | 148.12 (14) |
S1—C1—C2—C3 | 180.00 (10) | C5—C4—N1—O1 | 146.11 (14) |
C1—C2—C3—C4 | −2.9 (2) | C3—C4—N1—O1 | −32.00 (18) |
C2—C3—C4—C5 | 1.4 (2) | C8—C7—O5—S1 | 90.88 (15) |
C2—C3—C4—N1 | 179.36 (12) | C7i—C7—O5—S1 | −91.21 (17) |
C3—C4—C5—C6 | 1.3 (2) | C7—O5—S1—O3 | 38.27 (10) |
N1—C4—C5—C6 | −176.65 (12) | C7—O5—S1—O4 | 167.99 (9) |
C2—C1—C6—C5 | 0.9 (2) | C7—O5—S1—C1 | −77.84 (12) |
S1—C1—C6—C5 | −177.26 (10) | C2—C1—S1—O3 | 162.48 (11) |
C4—C5—C6—C1 | −2.5 (2) | C6—C1—S1—O3 | −19.24 (12) |
C7i—C7—C8—C9 | 0.9 (2) | C2—C1—S1—O4 | 27.66 (13) |
O5—C7—C8—C9 | 178.75 (12) | C6—C1—S1—O4 | −154.07 (11) |
C7—C8—C9—C9i | −0.1 (2) | C2—C1—S1—O5 | −82.20 (14) |
C5—C4—N1—O2 | −33.77 (19) | C6—C1—S1—O5 | 96.07 (14) |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data |
Chemical formula | C18H12N2O10S2 |
Mr | 480.42 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.667 (11), 10.803 (11), 15.868 (16) |
β (°) | 108.20 (9) |
V (Å3) | 1900 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.50 × 0.40 × 0.10 |
|
Data collection |
Diffractometer | Oxford Diffraction Xcalibur 2 CCD diffractometer |
Absorption correction | Multi-scan [c.f. r.h. blessing, acta cryst. (1995), a51, 33-38] |
Tmin, Tmax | 0.846, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 38881, 3744, 3259 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.788 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.116, 1.15 |
No. of reflections | 3744 |
No. of parameters | 169 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.52, −0.45 |
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.