Buy article online - an online subscription or single-article purchase is required to access this article.
The title compound, C7H8N+·ClO4-, is built up from (m-carboxyphenyl)ammonium cations and perchlorate anions. Crystal cohesion is ensured by strong cation-anion and cation-cation hydrogen bonds, between the carboxylic acid groups of the organic cations and the O atoms of the anions, and also between amine groups and carboxylic acid groups.
Supporting information
CCDC reference: 209992
Key indicators
- Single-crystal X-ray study
- T = 223 K
- Mean (C-C) = 0.003 Å
- R factor = 0.036
- wR factor = 0.140
- Data-to-parameter ratio = 11.8
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
Alert Level B:
REFLT_03
From the CIF: _diffrn_reflns_theta_max 26.35
From the CIF: _reflns_number_total 1629
TEST2: Reflns within _diffrn_reflns_theta_max
Count of symmetry unique reflns 1870
Completeness (_total/calc) 87.11%
Alert B: < 90% complete (theta max?)
General Notes
FORMU_01 There is a discrepancy between the atom counts in the
_chemical_formula_sum and _chemical_formula_moiety. This is
usually due to the moiety formula being in the wrong format.
Atom count from _chemical_formula_sum: C7 H8 Cl1 N1 O6
Atom count from _chemical_formula_moiety:C7 H8 Cl1 N1 O4
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check
The title compound was crystallized from a 1:1 aqueous solution of 3-aminobenzoic acid and perchlorate acid. Brown crystals grew after a few days.
Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Crystal data top
C7H8N+·ClO4− | Z = 2 |
Mr = 237.59 | F(000) = 244 |
Triclinic, P1 | Dx = 1.727 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.0886 (2) Å | Cell parameters from 1629 reflections |
b = 9.3338 (7) Å | θ = 2.1–26.4° |
c = 10.1159 (7) Å | µ = 0.43 mm−1 |
α = 103.904 (3)° | T = 223 K |
β = 95.153 (5)° | Prism, brown |
γ = 98.779 (5)° | 0.4 × 0.3 × 0.3 mm |
V = 456.90 (5) Å3 | |
Data collection top
KappaCCD diffractometer | Rint = 0.034 |
Radiation source: fine-focus sealed tube | θmax = 26.4°, θmin = 2.1° |
ϕ scans | h = −5→5 |
3143 measured reflections | k = −11→10 |
1629 independent reflections | l = −12→12 |
1532 reflections with I > 2σ(I) | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.27 | w = 1/[σ2(Fo2) + (0.0849P)2 + 0.1634P] where P = (Fo2 + 2Fc2)/3 |
1629 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
Crystal data top
C7H8N+·ClO4− | γ = 98.779 (5)° |
Mr = 237.59 | V = 456.90 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.0886 (2) Å | Mo Kα radiation |
b = 9.3338 (7) Å | µ = 0.43 mm−1 |
c = 10.1159 (7) Å | T = 223 K |
α = 103.904 (3)° | 0.4 × 0.3 × 0.3 mm |
β = 95.153 (5)° | |
Data collection top
KappaCCD diffractometer | 1532 reflections with I > 2σ(I) |
3143 measured reflections | Rint = 0.034 |
1629 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.27 | Δρmax = 0.46 e Å−3 |
1629 reflections | Δρmin = −0.62 e Å−3 |
138 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.2555 (4) | 0.5124 (2) | 0.24451 (19) | 0.0179 (5) | |
C2 | 0.5086 (4) | 0.6226 (2) | 0.28069 (19) | 0.0171 (5) | |
C3 | 0.6341 (4) | 0.6623 (2) | 0.17409 (19) | 0.0167 (5) | |
H3 | 0.5581 | 0.6208 | 0.0832 | 0.020* | |
C4 | 0.8707 (4) | 0.7632 (2) | 0.20531 (19) | 0.0169 (5) | |
C5 | 0.9900 (4) | 0.8282 (2) | 0.3398 (2) | 0.0208 (5) | |
H5 | 1.1510 | 0.8961 | 0.3587 | 0.025* | |
C6 | 0.8628 (5) | 0.7890 (2) | 0.4453 (2) | 0.0247 (5) | |
H6 | 0.9392 | 0.8317 | 0.5360 | 0.030* | |
C7 | 0.6240 (5) | 0.6874 (2) | 0.4171 (2) | 0.0213 (5) | |
H7 | 0.5404 | 0.6622 | 0.4885 | 0.026* | |
N | 1.0000 (4) | 0.80275 (19) | 0.09166 (17) | 0.0202 (4) | |
H1N | 1.0099 | 0.7194 | 0.0289 | 0.030* | |
H2N | 1.1645 | 0.8547 | 0.1236 | 0.030* | |
H3N | 0.9041 | 0.8582 | 0.0537 | 0.030* | |
O1 | 0.1563 (3) | 0.47873 (18) | 0.35230 (15) | 0.0265 (4) | |
H1 | 0.0171 | 0.4170 | 0.3263 | 0.032* | |
O2 | 0.1465 (3) | 0.45929 (17) | 0.12658 (15) | 0.0258 (4) | |
O3 | 0.5380 (3) | 0.96472 (18) | −0.23006 (17) | 0.0304 (4) | |
O4 | 0.5053 (4) | 0.82644 (19) | −0.06366 (16) | 0.0310 (4) | |
O5 | 0.3314 (3) | 0.71150 (17) | −0.29431 (16) | 0.0296 (4) | |
O6 | 0.1201 (3) | 0.89145 (17) | −0.16085 (16) | 0.0264 (4) | |
Cl | 0.37506 (9) | 0.84948 (5) | −0.18688 (4) | 0.0173 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0197 (12) | 0.0173 (9) | 0.0194 (10) | 0.0053 (8) | 0.0065 (8) | 0.0071 (7) |
C2 | 0.0194 (12) | 0.0165 (9) | 0.0173 (9) | 0.0045 (8) | 0.0052 (8) | 0.0062 (7) |
C3 | 0.0196 (13) | 0.0161 (9) | 0.0149 (9) | 0.0030 (8) | 0.0036 (8) | 0.0043 (7) |
C4 | 0.0188 (12) | 0.0164 (9) | 0.0180 (9) | 0.0045 (8) | 0.0060 (8) | 0.0074 (7) |
C5 | 0.0194 (13) | 0.0185 (10) | 0.0226 (10) | −0.0002 (8) | 0.0017 (8) | 0.0045 (8) |
C6 | 0.0303 (14) | 0.0245 (10) | 0.0161 (9) | −0.0008 (9) | 0.0007 (8) | 0.0039 (8) |
C7 | 0.0262 (13) | 0.0223 (10) | 0.0164 (9) | 0.0024 (8) | 0.0054 (8) | 0.0073 (7) |
N | 0.0186 (11) | 0.0221 (9) | 0.0204 (9) | −0.0008 (7) | 0.0055 (7) | 0.0079 (7) |
O1 | 0.0243 (11) | 0.0303 (9) | 0.0229 (8) | −0.0078 (6) | 0.0066 (6) | 0.0100 (6) |
O2 | 0.0245 (10) | 0.0276 (8) | 0.0215 (8) | −0.0036 (6) | 0.0027 (6) | 0.0044 (6) |
O3 | 0.0261 (10) | 0.0294 (9) | 0.0342 (9) | −0.0091 (7) | 0.0079 (7) | 0.0128 (7) |
O4 | 0.0312 (11) | 0.0389 (10) | 0.0259 (8) | 0.0090 (7) | −0.0017 (7) | 0.0142 (7) |
O5 | 0.0290 (11) | 0.0266 (9) | 0.0267 (8) | −0.0041 (7) | 0.0116 (7) | −0.0028 (7) |
O6 | 0.0180 (10) | 0.0292 (8) | 0.0340 (9) | 0.0065 (6) | 0.0078 (6) | 0.0091 (6) |
Cl | 0.0144 (4) | 0.0195 (3) | 0.0177 (3) | −0.0004 (2) | 0.0035 (2) | 0.0055 (2) |
Geometric parameters (Å, º) top
C1—O2 | 1.220 (2) | C4—N | 1.469 (2) |
C1—O1 | 1.326 (2) | C5—C6 | 1.390 (3) |
C1—C2 | 1.477 (3) | C6—C7 | 1.383 (3) |
C2—C3 | 1.397 (3) | O3—Cl | 1.4330 (15) |
C2—C7 | 1.400 (3) | O4—Cl | 1.4364 (15) |
C3—C4 | 1.371 (3) | O5—Cl | 1.4442 (15) |
C4—C5 | 1.389 (3) | O6—Cl | 1.4399 (16) |
| | | |
O2—C1—O1 | 123.4 (2) | C4—C5—C6 | 118.3 (2) |
O2—C1—C2 | 123.00 (18) | C7—C6—C5 | 120.82 (19) |
O1—C1—C2 | 113.63 (17) | C6—C7—C2 | 119.81 (19) |
C3—C2—C7 | 119.73 (19) | O3—Cl—O4 | 110.46 (11) |
C3—C2—C1 | 118.15 (17) | O3—Cl—O6 | 109.93 (10) |
C7—C2—C1 | 122.13 (18) | O4—Cl—O6 | 108.97 (10) |
C4—C3—C2 | 119.11 (18) | O3—Cl—O5 | 109.10 (10) |
C3—C4—C5 | 122.20 (18) | O4—Cl—O5 | 109.21 (10) |
C3—C4—N | 118.23 (17) | O6—Cl—O5 | 109.15 (9) |
C5—C4—N | 119.56 (19) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N—H1N···O2i | 0.89 | 2.00 | 2.822 (2) | 153 |
N—H2N···O3ii | 0.89 | 2.09 | 2.931 (3) | 158 |
N—H3N···O4 | 0.89 | 2.20 | 2.912 (3) | 137 |
N—H3N···O6iii | 0.89 | 2.36 | 2.943 (2) | 124 |
O1—H1···O5iv | 0.82 | 1.94 | 2.748 (2) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z; (iv) −x, −y+1, −z. |
Experimental details
Crystal data |
Chemical formula | C7H8N+·ClO4− |
Mr | 237.59 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 223 |
a, b, c (Å) | 5.0886 (2), 9.3338 (7), 10.1159 (7) |
α, β, γ (°) | 103.904 (3), 95.153 (5), 98.779 (5) |
V (Å3) | 456.90 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.4 × 0.3 × 0.3 |
|
Data collection |
Diffractometer | KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3143, 1629, 1532 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.625 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.140, 1.27 |
No. of reflections | 1629 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.62 |
Selected geometric parameters (Å, º) topC1—O2 | 1.220 (2) | O4—Cl | 1.4364 (15) |
C1—O1 | 1.326 (2) | O5—Cl | 1.4442 (15) |
O3—Cl | 1.4330 (15) | O6—Cl | 1.4399 (16) |
| | | |
O2—C1—O1 | 123.4 (2) | O4—Cl—O6 | 108.97 (10) |
O2—C1—C2 | 123.00 (18) | O3—Cl—O5 | 109.10 (10) |
O1—C1—C2 | 113.63 (17) | O4—Cl—O5 | 109.21 (10) |
O3—Cl—O4 | 110.46 (11) | O6—Cl—O5 | 109.15 (9) |
O3—Cl—O6 | 109.93 (10) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N—H1N···O2i | 0.89 | 2.00 | 2.822 (2) | 153 |
N—H2N···O3ii | 0.89 | 2.09 | 2.931 (3) | 158 |
N—H3N···O4 | 0.89 | 2.20 | 2.912 (3) | 137 |
N—H3N···O6iii | 0.89 | 2.36 | 2.943 (2) | 124 |
O1—H1···O5iv | 0.82 | 1.94 | 2.748 (2) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z; (iv) −x, −y+1, −z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
During the past few decades, organic–inorganic hybrid materials have been receiving increasing attention (Mazeaud et al., 2000; Soghomonian et al., 1995; Mayer et al., 1999) owing to their electrical, magnetic and optical properties (Kagan et al., 1999; Hill, 1998). This study is a part of systematic investigation on organic–inorganic hybrid materials including amino acids and various nitric: (m-carboxyphenyl)ammonium nitrate (Benali-Cherif, Cherouana et al., 2002) and L-histidinium dinitrate (Benali-Cherif, Benguedouar et al., 2002); phosphoric: (m-carboxyphenyl)ammonium phosphate (Benali-Cherif, Bendheif et al., 2002) and (p-carboxyphenyl)ammonuim dihydrogenmonophosphate monohydrate (Benali-Cherif, Abouimrane et al., 2002), and hydrochloride: 3-aminibenzoic acid hydrochloride (Arora et al., 1973) acids. The (m-carboxyphenyl)ammonium perchlorate structure, (I), is constituted by cationic (HCOO-C6H4—NH3+) and anionic (ClO4−) layers alternating along the c axis. All bond lengths and angles of the organic cation are within normal ranges and are in good agreement with those observed in (m-carboxyphenyl)ammonium nitrate, (m-carboxyphenyl)ammonium phosphate and 3-aminobenzoic acid hydrochloride. In the title compound, perchlorate anion is not disordered at 223 K, it is stabilized by strong interactions with its environment. The average Cl—O bond distances and O—Cl—O bond angles are 1.4384 (15) and 109.47 (10)°, respectively, confirming a tetrahedral symmetry (Table 1), similar to those observed in perchlorate studied at low temperature. Perchlorate anions (ClO4−), surrounded by four (m-carboxyphenyl)ammonium residues via N—H2N···O3, N—H3N···O4, N—H3N···O6 and O1—H1···O5 hydrogen bonds, plays an important role in stabilizing the crystal structure.
Two types of hydrogen bonds are observed in this structure, viz. cation–cation and anion–cation interactions.
For the cation–cation interactions, each (m-carboxyphenyl)ammonium cation is connected to its neighbour, parallel to the bc diagonal, by a strong hydrogen bond [N—H1N···O2 = 2.822 (2) Å)].
For the anion–cation interactions, two H atoms of the ammonium group are linked through hydrogen bonds to O3, O4 and O6 atoms of perchlorate, while the third is linked to atom O2 of the carboxylic acid group. The carboxylic acid group is not deprotonated and its H atom is involved in the strongest interaction with the perchlorate anion via O1—H1···O5 = 2.748 (2) Å.