Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Zn atom in the crystal structure of [Zn(C11H6N2O)2(H2O)2](NO3)2 lies on an inversion center; it is chelated by the 4,5-diazo­fluoren-9-one entity in a nearly isobidentate manner. The coordinated water mol­ecules link the nitrate anions to produce a linear hydrogen-bonded chain that runs along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012911/fl6042sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012911/fl6042Isup2.hkl
Contains datablock I

CCDC reference: 217374

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.047
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.780 REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.30 From the CIF: _reflns_number_total 2623 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2897 Completeness (_total/calc) 90.54% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

4,5-Diazafluoren-9-one also chelates to the Cu atom of a copper dinitrate adduct that crystallizes as a dihydrate in which the two water molecules coordinate to the metal atom. Unfortunately, [Cu(C11H6N2O)2(H2O)2](NO3)2 was refined in the P1 space group (Hu et al., 2001) rather than the correct P1 space group, so that the reported bond dimensions may not be reliable. Nevertheless, one Cu—N distance (ca 2.0 Å) is distinctly shorter than the other (ca 2.6 Å).

The present Zn analog, (I) (Fig. 1), is not isomorphous to the Cu compound. In this case, the ligand chelates to the Zn atom, which lies on an inversion center (1/2, 1/2, 1/2) in a nearly isobidentate manner [Zn—N = 2.201 (3) and 2.290 (3) Å]. The two other coordination sites of the octahedron around it are occupied by the water molecules [Zn—O = 2.061 (3) Å]. Hydrogen bonds link the the cations to the nitrate anions [O···O = 2.702 (4) and 2.744 (4) Å] leading to the formation of a chain motif running along the a axis of the crystal (Fig. 2). Nearly isobidentate chelation by the ligand is also noted in the dihydrated copper perchlorate complex (Gu et al., 2002; Zhang et al., 2003).

Experimental top

4,5-Diazafluoren-9-one (Henderson et al., 1984) (0.18 g, 1 mmol) was reacted with lithium hydride (0.01 g, 0.5 mmol) in tetrahydrofuran solvent (10 ml) in a Schlenk apparatus. The yellow solution was refluxed for 1 h, after which zinc nitrate (0.09 g, 0.5 mmol) dissolved in tetrahydrofuran (10 ml) was added. Reflux was continued for another hour. Yellow crystals separated from the solution after several days, m.p. 552 K. CH&N analysis: calculated for C22H16N6O10Zn: C 44.76, H 2.71, N 14.24%; found C 44.60, H 2.72, N 13.78%.

Refinement top

The water H atoms were located and refined. The aromatic H atoms were generated geometrically (C—H = 0.93 Å) in the riding-model approximation; their displacement parameters were set to 1.2 times those of their parent C atoms. The crystal used for data collection was a weak scatterer such that high-angle reflections, particularly those beyond θ of 25°, were not included in any calculations.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of (I), with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) plot of hydrogen-bonded chain structure of (I), with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
Diaquabis(4,5-diazafluoren-9-one-κ2N,N')zinc(II) dinitrate top
Crystal data top
[Zn(C11H6N2O)2(H2O)2](NO3)2Z = 1
Mr = 589.78F(000) = 300
Triclinic, P1Dx = 1.69 Mg m3
a = 6.989 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.283 (3) ÅCell parameters from 583 reflections
c = 10.222 (3) Åθ = 3.0–23.3°
α = 94.909 (4)°µ = 1.13 mm1
β = 91.394 (4)°T = 298 K
γ = 99.860 (4)°Block, yellow
V = 580.4 (3) Å30.28 × 0.22 × 0.15 mm
Data collection top
Bruker AXS 1K CCD
diffractometer
2623 independent reflections
Radiation source: fine-focus sealed tube1462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.724, Tmax = 0.844k = 510
3777 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.78 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
2623 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Zn(C11H6N2O)2(H2O)2](NO3)2γ = 99.860 (4)°
Mr = 589.78V = 580.4 (3) Å3
Triclinic, P1Z = 1
a = 6.989 (2) ÅMo Kα radiation
b = 8.283 (3) ŵ = 1.13 mm1
c = 10.222 (3) ÅT = 298 K
α = 94.909 (4)°0.28 × 0.22 × 0.15 mm
β = 91.394 (4)°
Data collection top
Bruker AXS 1K CCD
diffractometer
2623 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1462 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.844Rint = 0.034
3777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.78Δρmax = 0.69 e Å3
2623 reflectionsΔρmin = 0.68 e Å3
186 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0457 (2)
O10.3247 (4)0.7199 (3)0.0513 (2)0.063 (1)
O20.0408 (4)0.3804 (3)0.7268 (3)0.066 (1)
O30.0632 (4)0.1360 (4)0.7704 (3)0.088 (1)
O40.0975 (4)0.2023 (4)0.5738 (3)0.084 (1)
O1w0.2504 (4)0.5767 (4)0.5646 (3)0.054 (1)
N10.3430 (4)0.3900 (3)0.3051 (2)0.042 (1)
N20.5607 (4)0.7182 (3)0.3891 (2)0.038 (1)
N30.0409 (4)0.2381 (4)0.6893 (3)0.050 (1)
C10.2327 (5)0.2530 (5)0.2529 (4)0.059 (1)
C20.1519 (5)0.2336 (5)0.1239 (4)0.059 (1)
C30.1838 (5)0.3646 (5)0.0461 (3)0.051 (1)
C40.2976 (5)0.5080 (4)0.1002 (3)0.039 (1)
C50.3703 (4)0.5115 (4)0.2281 (3)0.037 (1)
C60.3604 (5)0.6745 (4)0.0542 (3)0.044 (1)
C70.4790 (4)0.6760 (4)0.2698 (3)0.036 (1)
C80.4755 (5)0.7760 (4)0.1684 (3)0.040 (1)
C90.5667 (5)0.9356 (5)0.1903 (3)0.054 (1)
C100.6543 (5)0.9853 (5)0.3144 (4)0.054 (1)
C110.6497 (5)0.8769 (4)0.4093 (3)0.046 (1)
H1w10.187 (6)0.516 (5)0.613 (4)0.07 (2)*
H1w20.194 (5)0.628 (4)0.520 (3)0.05 (1)*
H10.20710.16470.30410.070*
H20.07750.13370.09090.071*
H30.13030.35560.03900.061*
H90.57031.00790.12530.065*
H100.71691.09360.33340.065*
H110.71050.91430.49090.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0509 (4)0.0449 (4)0.0414 (4)0.0049 (3)0.0058 (3)0.0127 (3)
O10.083 (2)0.063 (2)0.042 (1)0.006 (2)0.011 (1)0.019 (1)
O20.081 (2)0.053 (2)0.059 (2)0.002 (2)0.010 (1)0.002 (2)
O30.086 (2)0.070 (2)0.111 (2)0.006 (2)0.009 (2)0.044 (2)
O40.097 (2)0.081 (2)0.072 (2)0.028 (2)0.039 (2)0.015 (2)
O1w0.053 (2)0.056 (2)0.057 (2)0.011 (2)0.005 (1)0.022 (2)
N10.048 (2)0.040 (2)0.038 (2)0.003 (2)0.007 (1)0.009 (1)
N20.036 (2)0.039 (2)0.039 (2)0.005 (1)0.002 (2)0.002 (1)
N30.043 (2)0.048 (2)0.061 (2)0.012 (2)0.002 (2)0.006 (2)
C10.063 (3)0.042 (2)0.066 (3)0.007 (2)0.006 (2)0.016 (2)
C20.061 (2)0.052 (3)0.058 (2)0.007 (2)0.015 (2)0.007 (2)
C30.049 (2)0.059 (3)0.042 (2)0.007 (2)0.008 (2)0.003 (2)
C40.038 (2)0.042 (2)0.035 (2)0.007 (2)0.004 (1)0.004 (2)
C50.036 (2)0.036 (2)0.037 (2)0.006 (2)0.003 (1)0.003 (2)
C60.049 (2)0.047 (2)0.038 (2)0.013 (2)0.001 (2)0.007 (2)
C70.034 (2)0.036 (2)0.040 (2)0.009 (2)0.002 (1)0.006 (2)
C80.043 (2)0.037 (2)0.039 (2)0.007 (2)0.001 (2)0.008 (2)
C90.072 (3)0.041 (2)0.052 (2)0.008 (2)0.002 (2)0.018 (2)
C100.065 (2)0.036 (2)0.058 (2)0.001 (2)0.001 (2)0.005 (2)
C110.047 (2)0.042 (2)0.048 (2)0.004 (2)0.003 (2)0.000 (2)
Geometric parameters (Å, º) top
Zn1—O1w2.061 (3)C4—C51.387 (4)
Zn1—O1wi2.061 (3)C4—C61.493 (5)
Zn1—N12.290 (3)C5—C71.465 (4)
Zn1—N1i2.290 (3)C6—C81.508 (5)
Zn1—N22.201 (3)C7—C81.383 (4)
Zn1—N2i2.201 (3)C8—C91.363 (4)
O1—C61.206 (3)C9—C101.393 (5)
O2—N31.242 (4)C10—C111.375 (4)
O3—N31.228 (4)O1w—H1w10.82 (4)
O4—N31.231 (4)O1w—H1w20.79 (3)
N1—C11.320 (4)C1—H10.93
N1—C51.321 (4)C2—H20.93
N2—C71.327 (4)C3—H30.93
N2—C111.351 (4)C9—H90.93
C1—C21.407 (5)C10—H100.93
C2—C31.390 (5)C11—H110.93
C3—C41.376 (4)
O1w—Zn1—O1wi180.0 (1)N1—C5—C4126.8 (3)
O1w—Zn1—N190.5 (1)N1—C5—C7123.7 (3)
O1w—Zn1—N1i89.5 (1)C4—C5—C7109.4 (3)
O1w—Zn1—N289.3 (1)O1—C6—C4127.6 (3)
O1w—Zn1—N2i90.8 (1)O1—C6—C8126.9 (3)
O1wi—Zn1—N189.5 (1)C4—C6—C8105.5 (3)
O1wi—Zn1—N1i90.5 (1)N2—C7—C8127.2 (3)
O1wi—Zn1—N290.8 (1)N2—C7—C5123.3 (3)
O1wi—Zn1—N2i89.3 (1)C8—C7—C5109.5 (3)
N1—Zn1—N1i180.0C9—C8—C7117.8 (3)
N1—Zn1—N281.3 (1)C9—C8—C6134.5 (3)
N1—Zn1—N2i98.7 (1)C7—C8—C6107.6 (3)
N1i—Zn1—N298.7 (1)C8—C9—C10117.0 (3)
N1i—Zn1—N2i81.3 (1)C11—C10—C9121.0 (3)
N2—Zn1—N2i180.0 (1)N2—C11—C10122.8 (3)
C1—N1—C5115.2 (3)Zn1—O1w—H1w1115 (3)
C1—N1—Zn1140.2 (2)Zn1—O1w—H1w2120 (3)
C5—N1—Zn1104.5 (2)H1w1—O1w—H1w2118 (4)
C7—N2—C11114.2 (3)N1—C1—H1118.3
C7—N2—Zn1107.2 (2)C2—C1—H1118.3
C11—N2—Zn1138.5 (2)C3—C2—H2120.2
O3—N3—O4121.6 (4)C1—C2—H2120.2
O3—N3—O2118.2 (3)C4—C3—H3121.4
O4—N3—O2120.2 (3)C2—C3—H3121.4
N1—C1—C2123.4 (3)C8—C9—H9121.5
C3—C2—C1119.6 (3)C10—C9—H9121.5
C4—C3—C2117.2 (3)C11—C10—H10119.5
C3—C4—C5117.7 (3)C9—C10—H10119.5
C3—C4—C6134.3 (3)N2—C11—H11118.6
C5—C4—C6107.9 (3)C10—C11—H11118.6
O1w—Zn1—N1—C186.2 (4)C3—C4—C5—C7177.2 (3)
O1wi—Zn1—N1—C193.8 (4)C6—C4—C5—C70.4 (4)
N2—Zn1—N1—C1175.3 (4)C3—C4—C6—O12.4 (6)
N2i—Zn1—N1—C14.7 (4)C5—C4—C6—O1179.5 (3)
O1w—Zn1—N1—C589.5 (2)C3—C4—C6—C8176.6 (4)
O1wi—Zn1—N1—C590.5 (2)C5—C4—C6—C80.5 (3)
N2—Zn1—N1—C50.3 (2)C11—N2—C7—C80.5 (5)
N2i—Zn1—N1—C5179.7 (2)Zn1—N2—C7—C8178.0 (3)
O1w—Zn1—N2—C790.9 (2)C11—N2—C7—C5178.3 (3)
O1wi—Zn1—N2—C789.1 (2)Zn1—N2—C7—C50.2 (4)
N1i—Zn1—N2—C7179.7 (2)N1—C5—C7—N20.2 (5)
N1—Zn1—N2—C70.3 (2)C4—C5—C7—N2177.9 (3)
O1w—Zn1—N2—C1187.0 (3)N1—C5—C7—C8178.0 (3)
O1wi—Zn1—N2—C1193.0 (3)C4—C5—C7—C80.2 (4)
N1i—Zn1—N2—C112.4 (3)N2—C7—C8—C90.7 (5)
N1—Zn1—N2—C11177.6 (3)C5—C7—C8—C9178.8 (3)
C5—N1—C1—C21.3 (5)N2—C7—C8—C6178.2 (3)
Zn1—N1—C1—C2176.7 (3)C5—C7—C8—C60.1 (4)
N1—C1—C2—C31.5 (6)O1—C6—C8—C90.7 (6)
C1—C2—C3—C41.0 (6)C4—C6—C8—C9178.3 (4)
C2—C3—C4—C50.5 (5)O1—C6—C8—C7179.4 (3)
C2—C3—C4—C6177.4 (4)C4—C6—C8—C70.4 (3)
C1—N1—C5—C40.8 (5)C7—C8—C9—C100.8 (5)
Zn1—N1—C5—C4177.8 (3)C6—C8—C9—C10177.8 (4)
C1—N1—C5—C7176.6 (3)C8—C9—C10—C110.6 (5)
Zn1—N1—C5—C70.4 (4)C7—N2—C11—C100.3 (5)
C3—C4—C5—N10.5 (5)Zn1—N2—C11—C10177.5 (3)
C6—C4—C5—N1178.1 (3)C9—C10—C11—N20.4 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O20.82 (4)1.89 (4)2.702 (4)179 (4)
O1w—H1w2···O4ii0.79 (3)1.97 (4)2.744 (4)167 (3)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C11H6N2O)2(H2O)2](NO3)2
Mr589.78
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.989 (2), 8.283 (3), 10.222 (3)
α, β, γ (°)94.909 (4), 91.394 (4), 99.860 (4)
V3)580.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.28 × 0.22 × 0.15
Data collection
DiffractometerBruker AXS 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.724, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
3777, 2623, 1462
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.106, 0.78
No. of reflections2623
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.68

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—O1w2.061 (3)Zn1—N22.201 (3)
Zn1—N12.290 (3)
O1w—Zn1—O1wi180.0 (1)N1—Zn1—N1i180.0
O1w—Zn1—N190.5 (1)N1—Zn1—N281.3 (1)
O1w—Zn1—N1i89.5 (1)N1—Zn1—N2i98.7 (1)
O1w—Zn1—N289.3 (1)N2—Zn1—N2i180.0 (1)
O1w—Zn1—N2i90.8 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds