Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The effect of pressure on DL-alanine has been studied by X-ray powder diffraction (up to 8.3 GPa), single-crystal X-ray diffraction and Raman spectroscopy (up to ∼ 6 GPa). No structural phase transitions have been observed. At ∼ 1.5–2 GPa, cell parameters b and c become accidentally equal to each other, but the space-group symmetry does not change. There is no phase transition between 1.7 and 2.3 GPa, contrary to what has been reported earlier [Belo et al. (2010). Vibr. Spectrosc. 54, 107–111]. The presence of the second phase transition, which was claimed to appear within the pressure range from 6.0 to 7.3 GPa (Belo et al., 2010), is also argued. The changes in the Raman spectra have been shown to be continuous in all the pressure ranges studied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768112028972/gp5051sup1.cif
Contains datablocks dlala_01kbar, dlala_05kbar, dlala_10kbar, dlala_15kbar, dlala_20kbar, dlala_25kbar, dlala_30kbar, dlala_36kbar, dlala_41kbar, dlala_45kbar, dlala_50kbar, dlala_55kbar, dlala_60kbar, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_01kbarsup2.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl01\dlala_01kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_05kbarsup3.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl05\dlala_05kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_10kbarsup4.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl10\dlala_10kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_15kbarsup5.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl15\dlala_15kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_20kbarsup6.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl20\dlala_20kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_25kbarsup7.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl25\dlala_25kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_30kbarsup8.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl30\dlala_30kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_36kbarsup9.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl36\dlala_36kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_41kbarsup10.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl41\dlala_41kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_45kbarsup11.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl45\dlala_45kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_50kbarsup12.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl50\dlala_50kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_55kbarsup13.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl55\dlala_55kbar_abs}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112028972/gp5051dlala_60kbarsup14.hkl
Contains datablock {e:\users\tumanov\current\dlalanine\sc\dl60\dlala_60kbar_abs}

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768112028972/gp5051sup15.pdf
Distributions of contacts on Hirshfield surfaces and wavenumbers versus pressure figures

CCDC references: 898970; 898971; 898972; 898973; 898974; 898975; 898976; 898977; 898978; 898979; 898980; 898981; 898982

Computing details top

For all compounds, data collection: CrysAlis PRO (Oxford Diffraction Ltd, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction Ltd, 2010); data reduction: CrysAlis PRO (Oxford Diffraction Ltd, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008), PLATON (Spek, 2009), enCIFer (Allen et al., 2004).

(dlala_01kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.405 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1621 reflections
a = 11.994 (2) Åθ = 3.5–31.1°
b = 6.0103 (16) ŵ = 0.12 mm1
c = 5.8421 (5) ÅT = 293 K
V = 421.13 (15) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
647 independent reflections
Graphite monochromator487 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.068
ω scansθmax = 31.1°, θmin = 3.8°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1414
Tmin = 0.399, Tmax = 0.478k = 66
3719 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0342P)2]
where P = (Fo2 + 2Fc2)/3
647 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.11 e Å3
Special details top

Experimental. high pressure measurement at 0.1 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.58853 (18)0.4838 (4)0.6042 (3)0.0391 (6)
O10.68638 (15)0.1986 (3)0.7406 (2)0.0367 (5)
C10.6455 (2)0.3131 (6)0.5815 (4)0.0296 (7)
C20.6631 (2)0.2183 (5)0.3386 (3)0.0255 (7)
H20.74150.17480.32340.031*
C30.5926 (3)0.0190 (6)0.2930 (4)0.0404 (9)
H3B0.60610.03330.14020.048*
H3C0.51540.05810.30890.048*
H3A0.61080.09620.40040.048*
N10.63912 (17)0.3948 (4)0.1656 (3)0.0292 (6)
H1C0.68460.50980.18810.035*
H1B0.56870.43950.17990.035*
H1A0.64970.34040.02560.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0394 (16)0.0505 (19)0.0275 (10)0.0171 (9)0.0046 (10)0.0049 (8)
O10.0435 (15)0.048 (2)0.0181 (6)0.0061 (9)0.0017 (9)0.0025 (10)
C10.021 (2)0.050 (3)0.0175 (10)0.0019 (11)0.0025 (10)0.0028 (13)
C20.028 (2)0.031 (3)0.0173 (10)0.0026 (10)0.0016 (10)0.0004 (12)
C30.049 (3)0.047 (3)0.0252 (15)0.0054 (13)0.0008 (12)0.0016 (14)
N10.0302 (15)0.038 (2)0.0188 (8)0.0001 (9)0.0010 (8)0.0011 (9)
Geometric parameters (Å, º) top
O2—C11.240 (4)C3—H3B0.9600
O1—C11.256 (3)C3—H3C0.9600
C1—C21.544 (3)C3—H3A0.9600
C2—C31.491 (4)N1—H1C0.8900
C2—N11.493 (3)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O2—C1—O1126.1 (2)H3B—C3—H3C109.5
O2—C1—C2118.6 (2)C2—C3—H3A109.5
O1—C1—C2115.1 (2)H3B—C3—H3A109.5
C3—C2—N1109.9 (2)H3C—C3—H3A109.5
C3—C2—C1112.5 (2)C2—N1—H1C109.5
N1—C2—C1109.5 (2)C2—N1—H1B109.5
C3—C2—H2108.3H1C—N1—H1B109.5
N1—C2—H2108.3C2—N1—H1A109.5
C1—C2—H2108.3H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O2—C1—C2—C3103.4 (4)O2—C1—C2—N119.1 (4)
O1—C1—C2—C372.7 (4)O1—C1—C2—N1164.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.992.849 (3)161
N1—H1A···O1ii0.891.922.806 (2)173
N1—H1A···O2ii0.892.713.378 (3)133
N1—H1C···O1iii0.891.942.812 (2)165
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_05kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.430 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1631 reflections
a = 11.938 (3) Åθ = 3.5–30.8°
b = 5.9485 (18) ŵ = 0.12 mm1
c = 5.8266 (6) ÅT = 293 K
V = 413.75 (16) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
640 independent reflections
Graphite monochromator502 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.062
ω scansθmax = 30.9°, θmin = 3.8°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1414
Tmin = 0.397, Tmax = 0.478k = 66
3677 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
640 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Special details top

Experimental. high pressure measurement at 0.5 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.58918 (17)0.4838 (4)0.6039 (3)0.0362 (6)
O10.68546 (15)0.1925 (3)0.7414 (3)0.0348 (5)
C10.6444 (2)0.3079 (6)0.5812 (4)0.0280 (7)
C20.6633 (2)0.2129 (5)0.3384 (3)0.0236 (7)
H20.74210.16890.32370.028*
C30.5914 (2)0.0099 (6)0.2937 (5)0.0375 (9)
H3B0.60650.04680.14260.045*
H3C0.51380.05120.30470.045*
H3A0.60780.10420.40520.045*
N10.63875 (17)0.3898 (4)0.1647 (3)0.0272 (5)
H1C0.68370.50710.18760.033*
H1B0.56770.43320.17800.033*
H1A0.65020.33470.02460.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0392 (15)0.0419 (18)0.0276 (11)0.0159 (9)0.0034 (9)0.0047 (8)
O10.0432 (15)0.0423 (19)0.0189 (7)0.0063 (8)0.0001 (9)0.0026 (10)
C10.020 (2)0.044 (3)0.0196 (11)0.0034 (11)0.0008 (10)0.0036 (13)
C20.023 (2)0.030 (3)0.0174 (11)0.0029 (10)0.0005 (9)0.0003 (12)
C30.048 (3)0.042 (3)0.0229 (15)0.0027 (12)0.0001 (12)0.0016 (13)
N10.0290 (14)0.034 (2)0.0185 (8)0.0013 (9)0.0001 (8)0.0013 (9)
Geometric parameters (Å, º) top
O2—C11.244 (4)C3—H3B0.9600
O1—C11.258 (3)C3—H3C0.9600
C1—C21.540 (3)C3—H3A0.9600
C2—N11.489 (3)N1—H1C0.8900
C2—C31.504 (4)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O2—C1—O1125.9 (2)H3B—C3—H3C109.5
O2—C1—C2118.9 (2)C2—C3—H3A109.5
O1—C1—C2115.1 (2)H3B—C3—H3A109.5
N1—C2—C3109.7 (2)H3C—C3—H3A109.5
N1—C2—C1109.7 (2)C2—N1—H1C109.5
C3—C2—C1111.7 (2)C2—N1—H1B109.5
N1—C2—H2108.6H1C—N1—H1B109.5
C3—C2—H2108.6C2—N1—H1A109.5
C1—C2—H2108.6H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O2—C1—C2—N116.8 (4)O2—C1—C2—C3105.1 (4)
O1—C1—C2—N1165.1 (2)O1—C1—C2—C373.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.982.845 (3)162
N1—H1A···O1ii0.891.902.788 (2)174
N1—H1A···O2ii0.892.713.368 (3)132
N1—H1C···O1iii0.891.942.801 (2)163
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_10kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.465 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1471 reflections
a = 11.852 (2) Åθ = 3.5–30.9°
b = 5.8715 (14) ŵ = 0.12 mm1
c = 5.8057 (5) ÅT = 293 K
V = 404.02 (12) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
607 independent reflections
Graphite monochromator472 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.060
ω scansθmax = 31.0°, θmin = 3.9°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1313
Tmin = 0.406, Tmax = 0.478k = 66
3497 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
607 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.14 e Å3
Special details top

Experimental. high pressure measurement at 1.0 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.58909 (17)0.4840 (4)0.6036 (3)0.0351 (6)
O10.68502 (16)0.1863 (3)0.7419 (2)0.0346 (5)
C10.6447 (2)0.3069 (6)0.5812 (4)0.0272 (7)
C20.6630 (2)0.2073 (6)0.3378 (3)0.0226 (7)
H20.74230.16250.32300.027*
C30.5910 (2)0.0025 (7)0.2938 (4)0.0349 (9)
H3B0.60860.05940.14500.042*
H3C0.51290.04560.29820.042*
H3A0.60520.11020.41000.042*
N10.63855 (16)0.3871 (4)0.1632 (3)0.0256 (5)
H1C0.68270.50700.18860.031*
H1B0.56660.42900.17410.031*
H1A0.65180.33240.02280.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0380 (16)0.042 (2)0.0256 (10)0.0148 (9)0.0030 (9)0.0053 (8)
O10.0394 (16)0.047 (2)0.0168 (6)0.0077 (9)0.0000 (9)0.0028 (10)
C10.016 (2)0.050 (3)0.0157 (11)0.0086 (11)0.0045 (10)0.0021 (14)
C20.017 (2)0.033 (3)0.0181 (11)0.0003 (10)0.0000 (10)0.0010 (12)
C30.041 (3)0.040 (3)0.0231 (15)0.0050 (12)0.0008 (12)0.0002 (13)
N10.0293 (15)0.032 (2)0.0159 (8)0.0037 (9)0.0004 (9)0.0007 (9)
Geometric parameters (Å, º) top
O2—C11.238 (4)C3—H3B0.9600
O1—C11.265 (3)C3—H3C0.9600
C1—C21.545 (3)C3—H3A0.9600
C2—N11.492 (3)N1—H1C0.8900
C2—C31.497 (4)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O2—C1—O1126.4 (2)H3B—C3—H3C109.5
O2—C1—C2119.3 (2)C2—C3—H3A109.5
O1—C1—C2114.2 (2)H3B—C3—H3A109.5
N1—C2—C3110.0 (2)H3C—C3—H3A109.5
N1—C2—C1109.0 (2)C2—N1—H1C109.5
C3—C2—C1112.4 (2)C2—N1—H1B109.5
N1—C2—H2108.5H1C—N1—H1B109.5
C3—C2—H2108.5C2—N1—H1A109.5
C1—C2—H2108.5H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O2—C1—C2—N117.6 (4)O2—C1—C2—C3104.6 (4)
O1—C1—C2—N1166.0 (2)O1—C1—C2—C371.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.962.824 (3)164
N1—H1A···O1ii0.891.882.770 (2)174
N1—H1A···O2ii0.892.703.350 (3)131
N1—H1C···O1iii0.891.912.769 (2)161
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_15kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.496 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1215 reflections
a = 11.7991 (15) Åθ = 3.9–26.8°
b = 5.7917 (15) ŵ = 0.13 mm1
c = 5.7900 (4) ÅT = 293 K
V = 395.67 (12) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
462 independent reflections
Graphite monochromator385 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.056
ω scansθmax = 26.8°, θmin = 3.9°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1313
Tmin = 0.417, Tmax = 0.476k = 55
2319 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
462 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.14 e Å3
Special details top

Experimental. high pressure measurement at 1.5 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5900 (2)0.4842 (6)0.6033 (4)0.0366 (9)
O10.68410 (17)0.1800 (4)0.7435 (3)0.0359 (9)
C10.6444 (2)0.3010 (8)0.5813 (5)0.0261 (13)
C20.6622 (2)0.2024 (8)0.3370 (4)0.0232 (13)
H20.74200.15780.32130.028*
C30.5907 (3)0.0055 (10)0.2930 (6)0.0350 (13)
H3B0.60800.06680.14300.042*
H3C0.51210.03690.29920.042*
H3A0.60610.12030.40840.042*
N10.63742 (19)0.3853 (6)0.1637 (3)0.0302 (9)
H1C0.68190.50670.18950.036*
H1B0.56520.42780.17550.036*
H1A0.65040.33080.02240.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0392 (15)0.042 (3)0.0285 (15)0.0104 (11)0.0007 (11)0.0047 (12)
O10.0384 (14)0.053 (3)0.0161 (8)0.0082 (12)0.0029 (10)0.0005 (14)
C10.016 (2)0.043 (5)0.0197 (16)0.0063 (14)0.0033 (13)0.001 (2)
C20.030 (2)0.024 (5)0.0150 (14)0.0009 (15)0.0018 (11)0.001 (2)
C30.043 (3)0.042 (5)0.019 (2)0.0054 (17)0.0006 (13)0.0031 (16)
N10.0334 (16)0.039 (4)0.0180 (11)0.0024 (13)0.0027 (10)0.0030 (16)
Geometric parameters (Å, º) top
O2—C11.246 (5)C3—H3B0.9600
O1—C11.262 (4)C3—H3C0.9600
C1—C21.540 (4)C3—H3A0.9600
C2—N11.488 (4)N1—H1C0.8900
C2—C31.492 (6)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O2—C1—O1126.0 (3)H3B—C3—H3C109.5
O2—C1—C2118.7 (3)C2—C3—H3A109.5
O1—C1—C2115.3 (3)H3B—C3—H3A109.5
N1—C2—C3110.4 (3)H3C—C3—H3A109.5
N1—C2—C1109.2 (3)C2—N1—H1C109.5
C3—C2—C1112.3 (3)C2—N1—H1B109.5
N1—C2—H2108.3H1C—N1—H1B109.5
C3—C2—H2108.3C2—N1—H1A109.5
C1—C2—H2108.3H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O2—C1—C2—N116.2 (5)O2—C1—C2—C3106.5 (5)
O1—C1—C2—N1166.3 (3)O1—C1—C2—C371.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.952.810 (3)163
N1—H1A···O1ii0.891.882.763 (3)173
N1—H1A···O2ii0.892.683.342 (3)132
N1—H1C···O1iii0.891.902.750 (3)159
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_20kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.514 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1447 reflections
a = 11.770 (3) Åθ = 3.5–31.0°
b = 5.751 (4) ŵ = 0.13 mm1
c = 5.7748 (8) ÅT = 293 K
V = 390.9 (3) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
564 independent reflections
Graphite monochromator432 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.079
ω scansθmax = 31.1°, θmin = 3.5°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1515
Tmin = 0.410, Tmax = 0.478k = 44
3228 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
564 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.15 e Å3
Special details top

Experimental. high pressure measurement at 2.0 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59149 (18)0.4868 (7)0.6048 (4)0.0312 (15)
O10.68432 (15)0.1767 (5)0.7437 (3)0.0328 (11)
C10.6438 (2)0.2952 (10)0.5814 (5)0.0234 (17)
C20.6623 (2)0.1998 (10)0.3362 (4)0.0213 (19)
H20.74230.15580.32040.026*
C30.5907 (2)0.0120 (12)0.2937 (6)0.036 (3)
H3B0.60750.07380.14310.043*
H3C0.51180.02960.30130.043*
H3A0.60700.12710.40930.043*
N10.63680 (19)0.3836 (7)0.1627 (3)0.0282 (12)
H1C0.68260.50460.18560.034*
H1B0.56490.42880.17780.034*
H1A0.64770.32750.02080.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0392 (13)0.028 (5)0.0263 (13)0.0055 (11)0.0007 (9)0.0037 (14)
O10.0378 (12)0.042 (4)0.0191 (8)0.0066 (13)0.0013 (9)0.0032 (15)
C10.0231 (17)0.027 (6)0.0198 (14)0.0039 (14)0.0013 (11)0.003 (2)
C20.0266 (18)0.022 (7)0.0156 (13)0.0002 (15)0.0014 (9)0.002 (2)
C30.039 (2)0.044 (9)0.023 (2)0.0040 (17)0.0016 (12)0.001 (2)
N10.0294 (14)0.041 (5)0.0145 (10)0.0025 (13)0.0011 (9)0.0001 (16)
Geometric parameters (Å, º) top
O2—C11.270 (7)C3—H3B0.9600
O1—C11.253 (4)C3—H3C0.9600
C1—C21.534 (4)C3—H3A0.9600
C2—N11.487 (5)N1—H1C0.8900
C2—C31.501 (8)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O1—C1—O2125.2 (3)H3B—C3—H3C109.5
O1—C1—C2116.2 (4)C2—C3—H3A109.5
O2—C1—C2118.5 (3)H3B—C3—H3A109.5
N1—C2—C3110.7 (3)H3C—C3—H3A109.5
N1—C2—C1109.8 (4)C2—N1—H1C109.5
C3—C2—C1111.2 (3)C2—N1—H1B109.5
N1—C2—H2108.3H1C—N1—H1B109.5
C3—C2—H2108.3C2—N1—H1A109.5
C1—C2—H2108.3H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O1—C1—C2—N1165.6 (4)O1—C1—C2—C371.6 (4)
O2—C1—C2—N113.1 (5)O2—C1—C2—C3109.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.952.808 (3)162
N1—H1A···O1ii0.891.872.754 (3)172
N1—H1A···O2ii0.892.663.319 (3)132
N1—H1C···O1iii0.891.882.737 (4)160
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_25kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.550 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1104 reflections
a = 11.677 (2) Åθ = 3.6–31.2°
b = 5.705 (2) ŵ = 0.13 mm1
c = 5.7311 (8) ÅT = 293 K
V = 381.76 (18) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 10.3457 pixels mm-1θmax = 31.2°, θmin = 5.0°
ω scansh = 1514
2540 measured reflectionsk = 55
571 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0153P)2]
where P = (Fo2 + 2Fc2)/3
571 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.15 e Å3
Special details top

Experimental. high pressure measurement at 2.5 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59113 (18)0.4854 (6)0.6056 (4)0.0299 (9)
O10.68391 (17)0.1718 (5)0.7453 (3)0.0316 (8)
C10.6445 (2)0.2978 (8)0.5819 (5)0.0233 (12)
C20.6625 (2)0.2001 (8)0.3371 (5)0.0205 (12)
H20.74330.15670.32060.025*
C30.5903 (3)0.0147 (9)0.2902 (7)0.0326 (14)
H3B0.60720.07400.13720.039*
H3C0.51070.02630.29900.039*
H3A0.60720.13280.40440.039*
N10.63591 (19)0.3813 (6)0.1621 (3)0.0273 (9)
H1C0.68080.50530.18490.033*
H1B0.56290.42400.17580.033*
H1A0.64800.32400.01970.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0351 (14)0.032 (3)0.0223 (13)0.0097 (10)0.0004 (11)0.0048 (13)
O10.0362 (13)0.041 (3)0.0176 (9)0.0093 (10)0.0010 (10)0.0027 (15)
C10.015 (2)0.037 (5)0.0176 (16)0.0054 (12)0.0029 (12)0.003 (2)
C20.024 (2)0.020 (5)0.0169 (15)0.0019 (12)0.0017 (11)0.004 (2)
C30.039 (3)0.030 (5)0.028 (2)0.0020 (14)0.0002 (14)0.0009 (19)
N10.0275 (16)0.039 (4)0.0159 (12)0.0029 (11)0.0006 (10)0.0042 (16)
Geometric parameters (Å, º) top
O2—C11.246 (5)C3—H3B0.9600
O1—C11.267 (4)C3—H3C0.9600
C1—C21.524 (4)C3—H3A0.9600
C2—N11.473 (4)N1—H1C0.8900
C2—C31.511 (6)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O2—C1—O1126.1 (3)H3B—C3—H3C109.5
O2—C1—C2118.9 (3)C2—C3—H3A109.5
O1—C1—C2115.0 (3)H3B—C3—H3A109.5
N1—C2—C3109.3 (3)H3C—C3—H3A109.5
N1—C2—C1110.0 (3)C2—N1—H1C109.5
C3—C2—C1112.5 (3)C2—N1—H1B109.5
N1—C2—H2108.3H1C—N1—H1B109.5
C3—C2—H2108.3C2—N1—H1A109.5
C1—C2—H2108.3H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O2—C1—C2—N113.9 (5)O2—C1—C2—C3108.2 (5)
O1—C1—C2—N1168.0 (3)O1—C1—C2—C369.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.912.777 (3)163
N1—H1A···O1ii0.891.842.729 (3)172
N1—H1A···O2ii0.892.633.286 (3)131
N1—H1C···O1iii0.891.882.721 (3)158
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_30kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.562 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1377 reflections
a = 11.6535 (18) Åθ = 3.5–31.0°
b = 5.681 (3) ŵ = 0.13 mm1
c = 5.7217 (6) ÅT = 293 K
V = 378.8 (2) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 10.3457 pixels mm-1θmax = 31.0°, θmin = 3.5°
ω scansh = 1616
3073 measured reflectionsk = 44
510 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
510 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.14 e Å3
Special details top

Experimental. high pressure measurement at 3.0 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59156 (15)0.4875 (7)0.6056 (4)0.0297 (15)
O10.68403 (12)0.1671 (6)0.7456 (3)0.0339 (13)
C10.6443 (2)0.2950 (10)0.5841 (5)0.031 (2)
C20.66270 (18)0.1982 (10)0.3361 (4)0.023 (2)
H20.74360.15440.31880.027*
C30.58968 (19)0.0173 (12)0.2908 (5)0.032 (3)
H3B0.60380.07380.13530.038*
H3C0.51010.02320.30670.038*
H3A0.60890.13790.40160.038*
N10.63525 (16)0.3800 (8)0.1610 (2)0.0290 (15)
H1C0.68000.50490.18360.035*
H1B0.56200.42210.17550.035*
H1A0.64710.32270.01830.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0369 (11)0.027 (5)0.0251 (11)0.0031 (13)0.0025 (9)0.0020 (13)
O10.0375 (10)0.048 (4)0.0160 (7)0.0097 (12)0.0010 (8)0.0086 (15)
C10.0174 (15)0.059 (8)0.0176 (13)0.0100 (16)0.0011 (10)0.006 (3)
C20.0225 (14)0.030 (7)0.0146 (12)0.0022 (16)0.0007 (8)0.008 (2)
C30.0397 (15)0.035 (9)0.0210 (16)0.0023 (18)0.0026 (10)0.0007 (19)
N10.0307 (12)0.043 (5)0.0133 (9)0.0038 (13)0.0014 (8)0.0042 (18)
Geometric parameters (Å, º) top
O2—C11.260 (6)C3—H3B0.9600
O1—C11.264 (5)C3—H3C0.9600
C1—C21.537 (4)C3—H3A0.9600
C2—N11.474 (6)N1—H1C0.8900
C2—C31.513 (8)N1—H1B0.8900
C2—H20.9800N1—H1A0.8900
O2—C1—O1127.3 (3)H3B—C3—H3C109.5
O2—C1—C2118.0 (3)C2—C3—H3A109.5
O1—C1—C2114.7 (4)H3B—C3—H3A109.5
N1—C2—C3109.2 (3)H3C—C3—H3A109.5
N1—C2—C1110.3 (4)C2—N1—H1C109.5
C3—C2—C1111.7 (3)C2—N1—H1B109.5
N1—C2—H2108.6H1C—N1—H1B109.5
C3—C2—H2108.6C2—N1—H1A109.5
C1—C2—H2108.6H1C—N1—H1A109.5
C2—C3—H3B109.5H1B—N1—H1A109.5
C2—C3—H3C109.5
O2—C1—C2—N112.2 (4)O2—C1—C2—C3109.3 (5)
O1—C1—C2—N1168.4 (4)O1—C1—C2—C370.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.891.902.767 (3)163
N1—H1A···O1ii0.891.842.727 (3)171
N1—H1A···O2ii0.892.623.276 (3)131
N1—H1C···O1iii0.891.872.708 (4)157
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_36kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.588 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 711 reflections
a = 11.617 (3) Åθ = 3.6–30.6°
b = 5.611 (4) ŵ = 0.13 mm1
c = 5.7156 (15) ÅT = 293 K
V = 372.6 (3) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 10.3457 pixels mm-1θmax = 30.7°, θmin = 5.0°
ω scansh = 1515
1714 measured reflectionsk = 44
477 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
477 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.15 e Å3
Special details top

Experimental. high pressure measurement at 3.6 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59274 (19)0.4843 (8)0.6076 (5)0.0306 (14)
O10.68409 (17)0.1645 (6)0.7455 (4)0.0282 (10)
C10.6445 (2)0.2921 (10)0.5818 (6)0.0215 (17)
C20.6623 (2)0.1965 (10)0.3351 (5)0.0177 (16)
H20.74360.15310.31710.021*
C30.5897 (3)0.0235 (12)0.2904 (7)0.029 (2)
H3B0.60730.08640.13840.035*
H3A0.50970.01830.29740.035*
H3C0.60630.14150.40730.035*
N10.6344 (2)0.3796 (8)0.1609 (4)0.0243 (13)
H1C0.68080.50420.17990.029*
H1A0.56160.42560.17930.029*
H1B0.64370.32000.01790.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0325 (12)0.036 (5)0.0233 (17)0.0062 (11)0.0001 (11)0.0023 (17)
O10.0358 (12)0.033 (3)0.0160 (12)0.0068 (11)0.0005 (9)0.0037 (19)
C10.0138 (16)0.031 (6)0.020 (2)0.0038 (13)0.0030 (14)0.002 (3)
C20.0209 (17)0.019 (6)0.013 (2)0.0020 (15)0.0003 (11)0.001 (2)
C30.0365 (19)0.027 (7)0.025 (3)0.0029 (16)0.0014 (13)0.002 (2)
N10.0279 (15)0.030 (5)0.0147 (17)0.0028 (12)0.0007 (10)0.003 (2)
Geometric parameters (Å, º) top
O2—C11.244 (7)C3—H3B0.9600
O1—C11.265 (5)C3—H3A0.9600
C1—C21.523 (5)C3—H3C0.9600
C2—N11.467 (5)N1—H1C0.8900
C2—C31.516 (8)N1—H1A0.8900
C2—H20.9800N1—H1B0.8900
O2—C1—O1125.4 (4)H3B—C3—H3A109.5
O2—C1—C2118.8 (4)C2—C3—H3C109.5
O1—C1—C2115.9 (4)H3B—C3—H3C109.5
N1—C2—C3109.4 (3)H3A—C3—H3C109.5
N1—C2—C1110.6 (4)C2—N1—H1C109.5
C3—C2—C1111.5 (3)C2—N1—H1A109.5
N1—C2—H2108.4H1C—N1—H1A109.5
C3—C2—H2108.4C2—N1—H1B109.5
C1—C2—H2108.4H1C—N1—H1B109.5
C2—C3—H3B109.5H1A—N1—H1B109.5
C2—C3—H3A109.5
O2—C1—C2—N111.9 (5)O2—C1—C2—C3110.1 (6)
O1—C1—C2—N1168.5 (4)O1—C1—C2—C369.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.912.764 (3)161
N1—H1B···O1ii0.891.852.725 (4)170
N1—H1B···O2ii0.892.593.253 (4)132
N1—H1C···O1iii0.891.852.690 (4)157
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_41kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.598 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1389 reflections
a = 11.5877 (17) Åθ = 3.5–31.1°
b = 5.617 (3) ŵ = 0.13 mm1
c = 5.6894 (5) ÅT = 293 K
V = 370.3 (2) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
528 independent reflections
Graphite monochromator420 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.064
ω scansθmax = 31.1°, θmin = 3.5°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1615
Tmin = 0.407, Tmax = 0.478k = 44
3067 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0226P)2]
where P = (Fo2 + 2Fc2)/3
528 reflections(Δ/σ)max = 0.040
57 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.12 e Å3
Special details top

Experimental. high pressure measurement at 4.1 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59313 (16)0.4854 (7)0.6080 (3)0.0269 (12)
O10.68393 (12)0.1626 (6)0.7461 (3)0.0291 (11)
C10.6451 (2)0.2911 (10)0.5840 (4)0.0253 (18)
C20.66259 (17)0.1938 (9)0.3346 (4)0.0193 (17)
H20.74400.15070.31550.023*
C30.5899 (2)0.0244 (11)0.2899 (5)0.029 (2)
H3B0.60440.08210.13380.035*
H3A0.50980.01580.30540.035*
H3C0.60940.14570.40190.035*
N10.63363 (16)0.3793 (7)0.1597 (3)0.0230 (13)
H1C0.67930.50500.18070.028*
H1A0.56030.42300.17760.028*
H1B0.64390.32170.01550.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0326 (10)0.025 (4)0.0228 (11)0.0041 (10)0.0002 (8)0.0031 (13)
O10.0312 (10)0.039 (4)0.0166 (7)0.0083 (10)0.0001 (7)0.0057 (14)
C10.0138 (13)0.045 (6)0.0169 (14)0.0065 (13)0.0009 (10)0.005 (2)
C20.0180 (14)0.025 (6)0.0149 (12)0.0034 (14)0.0008 (8)0.0043 (19)
C30.0326 (15)0.036 (7)0.0196 (15)0.0011 (15)0.0021 (9)0.0029 (18)
N10.0278 (13)0.028 (4)0.0138 (10)0.0037 (11)0.0009 (7)0.0083 (17)
Geometric parameters (Å, º) top
O2—C11.254 (6)C3—H3B0.9600
O1—C11.254 (4)C3—H3A0.9600
C1—C21.534 (3)C3—H3C0.9600
C2—N11.480 (5)N1—H1C0.8900
C2—C31.508 (7)N1—H1A0.8900
C2—H20.9800N1—H1B0.8900
O2—C1—O1126.4 (3)H3B—C3—H3A109.5
O2—C1—C2118.3 (3)C2—C3—H3C109.5
O1—C1—C2115.3 (4)H3B—C3—H3C109.5
N1—C2—C3109.4 (2)H3A—C3—H3C109.5
N1—C2—C1110.0 (4)C2—N1—H1C109.5
C3—C2—C1111.8 (3)C2—N1—H1A109.5
N1—C2—H2108.5H1C—N1—H1A109.5
C3—C2—H2108.5C2—N1—H1B109.5
C1—C2—H2108.5H1C—N1—H1B109.5
C2—C3—H3B109.5H1A—N1—H1B109.5
C2—C3—H3A109.5
O2—C1—C2—N111.6 (4)O2—C1—C2—C3110.1 (5)
O1—C1—C2—N1169.4 (3)O1—C1—C2—C368.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.892.751 (3)161
N1—H1B···O1ii0.891.832.713 (3)169
N1—H1B···O2ii0.892.563.229 (3)132
N1—H1C···O1iii0.891.852.691 (3)156
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_45kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.620 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 988 reflections
a = 11.572 (4) Åθ = 3.6–31.0°
b = 5.567 (5) ŵ = 0.14 mm1
c = 5.6710 (11) ÅT = 293 K
V = 365.4 (3) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
529 independent reflections
Graphite monochromator385 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.078
ω scansθmax = 31.0°, θmin = 5.0°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1515
Tmin = 0.408, Tmax = 0.478k = 44
2420 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0259P)2]
where P = (Fo2 + 2Fc2)/3
529 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.14 e Å3
Special details top

Experimental. high pressure measurement at 4.1 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5938 (2)0.4859 (7)0.6098 (4)0.0296 (11)
O10.68400 (17)0.1605 (6)0.7463 (4)0.0319 (10)
C10.6446 (3)0.2888 (11)0.5824 (6)0.0297 (19)
C20.6620 (2)0.1920 (9)0.3323 (5)0.0222 (16)
H20.74350.14870.31280.027*
C30.5897 (3)0.0282 (11)0.2906 (7)0.0320 (19)
H3B0.60750.09420.13850.038*
H3A0.50930.01410.29650.038*
H3C0.60600.14540.41030.038*
N10.6333 (2)0.3785 (7)0.1596 (3)0.0257 (12)
H1C0.67810.50620.18330.031*
H1A0.55950.42040.17600.031*
H1B0.64490.32220.01460.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0343 (13)0.030 (4)0.0247 (14)0.0039 (11)0.0004 (10)0.0029 (16)
O10.0333 (13)0.043 (4)0.0196 (10)0.0066 (10)0.0012 (9)0.0020 (17)
C10.0185 (19)0.050 (7)0.0210 (17)0.0046 (15)0.0010 (14)0.002 (2)
C20.0221 (18)0.032 (6)0.0128 (16)0.0012 (15)0.0009 (10)0.004 (2)
C30.034 (2)0.038 (7)0.024 (2)0.0028 (16)0.0030 (12)0.003 (2)
N10.0328 (18)0.031 (5)0.0134 (12)0.0036 (12)0.0009 (10)0.0050 (19)
Geometric parameters (Å, º) top
O2—C11.255 (7)C3—H3B0.9600
O1—C11.258 (5)C3—H3A0.9600
C1—C21.531 (4)C3—H3C0.9600
C2—N11.465 (5)N1—H1C0.8900
C2—C31.503 (7)N1—H1A0.8900
C2—H20.9800N1—H1B0.8900
O2—C1—O1125.1 (4)H3B—C3—H3A109.5
O2—C1—C2119.0 (4)C2—C3—H3C109.5
O1—C1—C2115.9 (4)H3B—C3—H3C109.5
N1—C2—C3110.3 (3)H3A—C3—H3C109.5
N1—C2—C1109.9 (4)C2—N1—H1C109.5
C3—C2—C1111.1 (3)C2—N1—H1A109.5
N1—C2—H2108.5H1C—N1—H1A109.5
C3—C2—H2108.5C2—N1—H1B109.5
C1—C2—H2108.5H1C—N1—H1B109.5
C2—C3—H3B109.5H1A—N1—H1B109.5
C2—C3—H3A109.5
O2—C1—C2—N110.9 (5)O2—C1—C2—C3111.4 (6)
O1—C1—C2—N1168.9 (4)O1—C1—C2—C368.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.892.749 (3)163
N1—H1B···O1ii0.891.832.704 (3)169
N1—H1B···O2ii0.892.543.208 (3)132
N1—H1C···O1iii0.891.852.679 (4)155
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_50kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.636 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1408 reflections
a = 11.537 (3) Åθ = 3.6–31.0°
b = 5.554 (3) ŵ = 0.14 mm1
c = 5.6456 (8) ÅT = 293 K
V = 361.7 (2) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
499 independent reflections
Graphite monochromator396 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.075
ω scansθmax = 31.1°, θmin = 5.1°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1414
Tmin = 0.408, Tmax = 0.478k = 44
3018 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
499 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.15 e Å3
Special details top

Experimental. high pressure measurement at 5.0 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5940 (2)0.4834 (7)0.6102 (3)0.0278 (9)
O10.68384 (16)0.1575 (5)0.7474 (3)0.0261 (8)
C10.6452 (2)0.2890 (9)0.5832 (5)0.0218 (14)
C20.6624 (2)0.1900 (9)0.3325 (4)0.0211 (14)
H20.74420.14680.31210.025*
C30.5895 (3)0.0286 (11)0.2882 (6)0.0318 (17)
H3B0.60800.09430.13550.038*
H3A0.50910.01520.29240.038*
H3C0.60480.14680.40820.038*
N10.6323 (2)0.3778 (7)0.1586 (3)0.0251 (11)
H1C0.67720.50610.18140.030*
H1A0.55840.41940.17660.030*
H1B0.64330.32130.01280.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0315 (13)0.031 (3)0.0209 (11)0.0059 (11)0.0003 (9)0.0014 (13)
O10.0335 (14)0.027 (3)0.0177 (9)0.0078 (9)0.0004 (8)0.0030 (14)
C10.0113 (19)0.033 (5)0.0214 (16)0.0017 (12)0.0021 (12)0.0029 (19)
C20.0203 (19)0.029 (5)0.0139 (14)0.0001 (14)0.0011 (9)0.0009 (18)
C30.035 (2)0.038 (6)0.0222 (17)0.0029 (15)0.0030 (12)0.002 (2)
N10.0246 (16)0.036 (4)0.0144 (12)0.0041 (11)0.0005 (9)0.0016 (16)
Geometric parameters (Å, º) top
O2—C11.240 (6)C3—H3B0.9600
O1—C11.262 (4)C3—H3A0.9600
C1—C21.531 (4)C3—H3C0.9600
C2—N11.474 (5)N1—H1C0.8900
C2—C31.498 (7)N1—H1A0.8900
C2—H20.9800N1—H1B0.8900
O2—C1—O1125.6 (3)H3B—C3—H3A109.5
O2—C1—C2119.2 (3)C2—C3—H3C109.5
O1—C1—C2115.2 (3)H3B—C3—H3C109.5
N1—C2—C3109.3 (3)H3A—C3—H3C109.5
N1—C2—C1109.3 (3)C2—N1—H1C109.5
C3—C2—C1111.9 (3)C2—N1—H1A109.5
N1—C2—H2108.8H1C—N1—H1A109.5
C3—C2—H2108.8C2—N1—H1B109.5
C1—C2—H2108.8H1C—N1—H1B109.5
C2—C3—H3B109.5H1A—N1—H1B109.5
C2—C3—H3A109.5
O2—C1—C2—N111.1 (5)O2—C1—C2—C3110.0 (5)
O1—C1—C2—N1170.2 (3)O1—C1—C2—C368.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.882.737 (3)162
N1—H1B···O1ii0.891.812.691 (3)168
N1—H1B···O2ii0.892.513.182 (3)133
N1—H1C···O1iii0.891.852.676 (4)154
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_55kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.657 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1339 reflections
a = 11.4915 (17) Åθ = 3.6–30.6°
b = 5.5249 (18) ŵ = 0.14 mm1
c = 5.6262 (5) ÅT = 293 K
V = 357.21 (13) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
512 independent reflections
Graphite monochromator425 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.068
ω scansθmax = 30.7°, θmin = 4.1°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1414
Tmin = 0.409, Tmax = 0.478k = 55
2999 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0256P)2]
where P = (Fo2 + 2Fc2)/3
512 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.13 e Å3
Special details top

Experimental. high pressure measurement at 5.5 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59485 (19)0.4835 (6)0.6110 (3)0.0282 (9)
O10.68382 (16)0.1534 (5)0.7477 (3)0.0271 (7)
C10.6451 (2)0.2889 (8)0.5829 (4)0.0215 (12)
C20.6621 (2)0.1901 (8)0.3317 (4)0.0187 (11)
H20.74420.14760.31080.022*
C30.5899 (3)0.0305 (9)0.2881 (5)0.0259 (12)
H3B0.60940.09800.13600.031*
H3A0.50900.01270.29000.031*
H3C0.60480.14780.41020.031*
N10.63158 (19)0.3770 (6)0.1585 (3)0.0260 (10)
H1C0.67640.50630.18100.031*
H1A0.55730.41830.17690.031*
H1B0.64250.32020.01220.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0298 (13)0.032 (3)0.0225 (11)0.0070 (10)0.0012 (8)0.0035 (12)
O10.0318 (13)0.034 (3)0.0157 (8)0.0075 (9)0.0011 (8)0.0003 (12)
C10.0101 (17)0.037 (5)0.0180 (14)0.0040 (11)0.0018 (11)0.0005 (17)
C20.0203 (18)0.023 (4)0.0132 (13)0.0004 (12)0.0017 (9)0.0013 (16)
C30.035 (2)0.022 (4)0.0206 (16)0.0025 (13)0.0001 (11)0.0002 (17)
N10.0255 (16)0.037 (4)0.0159 (11)0.0037 (10)0.0006 (8)0.0017 (16)
Geometric parameters (Å, º) top
O2—C11.231 (5)C3—H3B0.9600
O1—C11.272 (4)C3—H3A0.9600
C1—C21.528 (3)C3—H3C0.9600
C2—N11.463 (5)N1—H1C0.8900
C2—C31.495 (6)N1—H1A0.8900
C2—H20.9800N1—H1B0.8900
O2—C1—O1125.8 (3)H3B—C3—H3A109.5
O2—C1—C2119.4 (3)C2—C3—H3C109.5
O1—C1—C2114.8 (3)H3B—C3—H3C109.5
N1—C2—C3109.5 (2)H3A—C3—H3C109.5
N1—C2—C1109.5 (3)C2—N1—H1C109.5
C3—C2—C1111.9 (3)C2—N1—H1A109.5
N1—C2—H2108.7H1C—N1—H1A109.5
C3—C2—H2108.7C2—N1—H1B109.5
C1—C2—H2108.7H1C—N1—H1B109.5
C2—C3—H3B109.5H1A—N1—H1B109.5
C2—C3—H3A109.5
O2—C1—C2—N110.5 (4)O2—C1—C2—C3111.0 (5)
O1—C1—C2—N1170.9 (3)O1—C1—C2—C367.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.872.727 (3)162
N1—H1B···O1ii0.891.812.689 (3)167
N1—H1B···O2ii0.892.493.164 (3)133
N1—H1C···O1iii0.891.842.662 (3)153
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
(dlala_60kbar) DL-2-Aminopropionic Acid top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.10Dx = 1.671 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1267 reflections
a = 11.452 (3) Åθ = 3.6–30.9°
b = 5.516 (3) ŵ = 0.14 mm1
c = 5.6060 (7) ÅT = 293 K
V = 354.10 (19) Å3Plate, colorless
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Gemini Ultra R
diffractometer
511 independent reflections
Graphite monochromator387 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.072
ω scansθmax = 31.0°, θmin = 4.1°
Absorption correction: gaussian
Absorb6.1 (R. J. Angel, 2004)
h = 1414
Tmin = 0.410, Tmax = 0.478k = 55
2988 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0244P)2]
where P = (Fo2 + 2Fc2)/3
511 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Special details top

Experimental. high pressure measurement at 6.0 GPa in the DAC

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5952 (2)0.4837 (6)0.6131 (4)0.0261 (9)
O10.68412 (17)0.1506 (5)0.7476 (3)0.0279 (8)
C10.6452 (2)0.2841 (8)0.5824 (5)0.0209 (12)
C20.6621 (2)0.1898 (8)0.3312 (4)0.0195 (12)
H20.74460.14810.30970.023*
C30.5895 (3)0.0342 (10)0.2874 (6)0.0284 (12)
H3B0.60770.09940.13310.034*
H3A0.50810.00740.29350.034*
H3C0.60630.15300.40770.034*
N10.63087 (19)0.3762 (6)0.1576 (3)0.0248 (10)
H1C0.67520.50660.18040.030*
H1A0.55610.41600.17560.030*
H1B0.64230.31950.01080.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0318 (14)0.026 (3)0.0206 (12)0.0043 (10)0.0007 (9)0.0019 (12)
O10.0312 (14)0.033 (3)0.0195 (9)0.0065 (9)0.0002 (9)0.0035 (13)
C10.016 (2)0.024 (5)0.0225 (17)0.0022 (13)0.0031 (12)0.0001 (19)
C20.018 (2)0.027 (5)0.0135 (15)0.0007 (13)0.0006 (10)0.0027 (17)
C30.035 (2)0.023 (5)0.0267 (18)0.0022 (14)0.0035 (13)0.0021 (18)
N10.0268 (17)0.035 (4)0.0123 (11)0.0026 (10)0.0015 (9)0.0001 (16)
Geometric parameters (Å, º) top
O2—C11.253 (5)C3—H3B0.9600
O1—C11.264 (4)C3—H3A0.9600
C1—C21.513 (4)C3—H3C0.9600
C2—N11.460 (5)N1—H1C0.8900
C2—C31.510 (6)N1—H1A0.8900
C2—H20.9800N1—H1B0.8900
O2—C1—O1124.9 (3)H3B—C3—H3A109.5
O2—C1—C2119.2 (3)C2—C3—H3C109.5
O1—C1—C2115.9 (3)H3B—C3—H3C109.5
N1—C2—C3109.4 (3)H3A—C3—H3C109.5
N1—C2—C1110.3 (3)C2—N1—H1C109.5
C3—C2—C1111.2 (3)C2—N1—H1A109.5
N1—C2—H2108.6H1C—N1—H1A109.5
C3—C2—H2108.6C2—N1—H1B109.5
C1—C2—H2108.6H1C—N1—H1B109.5
C2—C3—H3B109.5H1A—N1—H1B109.5
C2—C3—H3A109.5
O2—C1—C2—N19.0 (5)O2—C1—C2—C3112.6 (5)
O1—C1—C2—N1170.9 (3)O1—C1—C2—C367.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.852.713 (3)162
N1—H1B···O1ii0.891.812.684 (3)167
N1—H1B···O2ii0.892.473.136 (3)132
N1—H1C···O1iii0.891.842.652 (4)152
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y, z1; (iii) x+3/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds