Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The enzyme trypanothione reductase (TR) is unique to trypanosomes and leishmania parasites, the causal agents of several important medical and veterinary tropical diseases. TR helps regulate the intracellular reducing environment of the parasite and it has been identified as a target for developing novel chemotherapeutic agents by structure-aided drug design. For this purpose it is essential to have confidence in the structural detail of the molecular target. Two independent studies of Crithidia fasciculata TR at medium resolution, in different space groups have afforded an opportunity to assess the reliability of the models. We summarize the important methodological details of each analysis and present a comparison of the geometry, thermal parameters and three-dimensional structure of the models. Particular attention has been paid to the disulfide substrate-binding site which is the area of most interest with respect to enzyme inhibition. The comparison has shown that the structures agree closely with Cα atoms superposing with an r.m.s. of less than 0.5 Å. The consistency of the models gives a high level of confidence that they are suitable for computer-aided drug design. The conformation of many side chains in the active site, in particular the catalytic residues, are well conserved in both structures. However, the comparison indicates a difference in the conformation of Trp21 and Met113 which together form a hydrophobic patch on the rim of the active-site cleft and interact with the spermidine moiety of the substrate. Consideration of the electron-density maps together with the structural comparison indicates that there is some conformational flexibility in this region of the active site. This heterogeneity may be used in the recognition of the substrate by the enzyme and should be considered when mapping out the size, shape and chemical properties of the active site.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email [email protected] for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds