Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A group of anaerobic microorganisms use sulfate as the terminal electron acceptor for energy conservation. The process of sulfate reduction involves several enzymatic steps. One of them is the conversion of adenylyl sulfate (adenosine-5′-phosphosulfate) to sulfite, catalyzed by adenylylsulfate reductase. This enzyme is composed of a FAD-containing α-subunit and a β-subunit harbouring two [4Fe–4S] clusters. Adenylylsulfate reductase was isolated from Archaeoglobus fulgidus under anaerobic conditions and crystallized using the hanging-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals grew in space group P212121, with unit-cell parameters a = 72.4, b = 113.2, c = 194.0 Å. The asymmetric unit probably contains two αβ units. The crystals diffract beyond 2 Å resolution and are suitable for X-ray structure analysis.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds