Buy article online - an online subscription or single-article purchase is required to access this article.
The title compound was obtained by microwave-assisted hydrothermal synthesis at 463 K. It is isostructural with the mineral horváthite, NaY(CO3)F2. The structure is built up from (010) infinite [NaYbCO3]2+ layers interspersed by fluoride ions. All the atoms except F have site symmetry m.
Supporting information
CCDC reference: 296558
Key indicators
- Single-crystal X-ray study
- T = 298 K
- Mean (O-C) = 0.012 Å
- R factor = 0.030
- wR factor = 0.077
- Data-to-parameter ratio = 13.2
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT040_ALERT_1_C No H-atoms in this Carbon Containing Compound .. ?
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.10
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
2 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4; data reduction: X-RED32 (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Version 1.0; Allen et al., 2004).
Sodium ytterbium carbonate difluoride, NaYb(CO
3)F
2 top
Crystal data top
NaYb(CO3)F2 | F(000) = 516 |
Mr = 294.04 | Dx = 4.973 Mg m−3 Dm = 4.95 (1) Mg m−3 Dm measured by pycnometery |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 32 reflections |
a = 6.243 (1) Å | θ = 28–32° |
b = 6.892 (2) Å | µ = 23.86 mm−1 |
c = 9.127 (2) Å | T = 298 K |
V = 392.71 (16) Å3 | Parallelepiped, colorless |
Z = 4 | 0.15 × 0.10 × 0.04 mm |
Data collection top
Siemens AED2 diffractometer | 523 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 30.0°, θmin = 3.7° |
2θ/ω scans | h = 0→8 |
Absorption correction: gaussian (SHELX76; Sheldrick, 1976) | k = 0→9 |
Tmin = 0.07, Tmax = 0.39 | l = 0→12 |
609 measured reflections | 3 standard reflections every 120 min |
609 independent reflections | intensity decay: 15% |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.030 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.046P)2 + 2.2577P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
609 reflections | Δρmax = 2.15 e Å−3 |
46 parameters | Δρmin = −2.32 e Å−3 |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Na | 0.1691 (7) | 0.2500 | 0.2173 (5) | 0.0208 (11) | |
Yb | 0.01201 (5) | 0.2500 | 0.57782 (4) | 0.00582 (15) | |
C | 0.4582 (15) | 0.2500 | 0.5622 (11) | 0.0093 (17) | |
O1 | 0.3673 (11) | 0.2500 | 0.6888 (7) | 0.0106 (14) | |
O2 | 0.6586 (12) | 0.2500 | 0.5451 (9) | 0.022 (2) | |
O3 | 0.3346 (11) | 0.2500 | 0.4501 (8) | 0.0174 (18) | |
F | −0.0432 (7) | 0.4407 (7) | 0.3710 (5) | 0.0138 (8) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Na | 0.0145 (19) | 0.035 (3) | 0.013 (2) | 0.000 | 0.0026 (16) | 0.000 |
Yb | 0.0063 (2) | 0.0045 (2) | 0.0066 (2) | 0.000 | 0.00015 (13) | 0.000 |
C | 0.005 (3) | 0.009 (5) | 0.014 (4) | 0.000 | 0.004 (3) | 0.000 |
O1 | 0.012 (3) | 0.016 (4) | 0.004 (3) | 0.000 | 0.001 (2) | 0.000 |
O2 | 0.008 (3) | 0.046 (6) | 0.013 (4) | 0.000 | 0.000 (3) | 0.000 |
O3 | 0.009 (3) | 0.035 (5) | 0.008 (3) | 0.000 | −0.001 (2) | 0.000 |
F | 0.0196 (19) | 0.009 (2) | 0.0134 (18) | −0.0014 (18) | −0.0016 (16) | −0.0003 (16) |
Geometric parameters (Å, º) top
Na—F | 2.336 (6) | Yb—F | 2.326 (4) |
Na—Fi | 2.336 (6) | Yb—O3 | 2.327 (7) |
Na—O3 | 2.363 (9) | Yb—O1 | 2.439 (7) |
Na—Fii | 2.367 (6) | C—O2 | 1.261 (11) |
Na—Fiii | 2.367 (6) | C—O3 | 1.282 (12) |
Na—O2iv | 2.395 (10) | C—O1 | 1.287 (11) |
Na—O3iv | 2.587 (9) | O1—Ybix | 2.314 (7) |
Yb—Fv | 2.191 (5) | O2—Ybx | 2.227 (8) |
Yb—Fvi | 2.191 (5) | O2—Naii | 2.395 (10) |
Yb—O2vii | 2.227 (8) | O3—Naii | 2.587 (9) |
Yb—O1viii | 2.314 (7) | F—Ybv | 2.191 (5) |
Yb—Fi | 2.326 (4) | F—Naiv | 2.367 (6) |
| | | |
F—Na—Fi | 68.5 (2) | Fi—Yb—F | 68.8 (2) |
F—Na—O3 | 73.0 (2) | Fv—Yb—O3 | 91.71 (12) |
Fi—Na—O3 | 73.0 (2) | Fvi—Yb—O3 | 91.71 (12) |
F—Na—Fii | 108.8 (2) | O2vii—Yb—O3 | 142.2 (3) |
Fi—Na—Fii | 161.4 (3) | O1viii—Yb—O3 | 143.0 (3) |
O3—Na—Fii | 88.5 (2) | Fi—Yb—O3 | 73.84 (18) |
F—Na—Fiii | 161.4 (3) | F—Yb—O3 | 73.84 (18) |
Fi—Na—Fiii | 108.83 (19) | Fv—Yb—O1 | 80.25 (12) |
O3—Na—Fiii | 88.5 (2) | Fvi—Yb—O1 | 80.25 (12) |
Fii—Na—Fiii | 67.5 (3) | O2vii—Yb—O1 | 163.2 (3) |
F—Na—O2iv | 125.8 (2) | O1viii—Yb—O1 | 88.44 (12) |
Fi—Na—O2iv | 125.8 (2) | Fi—Yb—O1 | 118.16 (17) |
O3—Na—O2iv | 155.7 (3) | F—Yb—O1 | 118.16 (17) |
Fii—Na—O2iv | 71.4 (2) | O3—Yb—O1 | 54.6 (3) |
Fiii—Na—O2iv | 71.4 (2) | O2—C—O3 | 119.9 (9) |
F—Na—O3iv | 84.1 (2) | O2—C—O1 | 123.3 (10) |
Fi—Na—O3iv | 84.1 (2) | O3—C—O1 | 116.8 (8) |
O3—Na—O3iv | 152.1 (3) | C—O1—Ybix | 130.9 (6) |
Fii—Na—O3iv | 114.3 (2) | C—O1—Yb | 91.6 (6) |
Fiii—Na—O3iv | 114.3 (2) | Ybix—O1—Yb | 137.5 (3) |
O2iv—Na—O3iv | 52.2 (3) | C—O2—Ybx | 165.1 (8) |
Fv—Yb—Fvi | 153.3 (2) | C—O2—Naii | 98.7 (7) |
Fv—Yb—O2vii | 96.70 (12) | Ybx—O2—Naii | 96.1 (3) |
Fvi—Yb—O2vii | 96.70 (12) | C—O3—Yb | 97.0 (6) |
Fv—Yb—O1viii | 80.71 (12) | C—O3—Na | 168.9 (7) |
Fvi—Yb—O1viii | 80.71 (12) | Yb—O3—Na | 94.1 (3) |
O2vii—Yb—O1viii | 74.7 (3) | C—O3—Naii | 89.2 (6) |
Fv—Yb—Fi | 137.39 (13) | Yb—O3—Naii | 173.9 (4) |
Fvi—Yb—Fi | 68.66 (18) | Na—O3—Naii | 79.7 (2) |
O2vii—Yb—Fi | 75.2 (2) | Ybv—F—Yb | 111.34 (18) |
O1viii—Yb—Fi | 133.57 (16) | Ybv—F—Na | 128.7 (2) |
Fv—Yb—F | 68.66 (18) | Yb—F—Na | 94.91 (19) |
Fvi—Yb—F | 137.39 (13) | Ybv—F—Naiv | 132.9 (2) |
O2vii—Yb—F | 75.2 (2) | Yb—F—Naiv | 94.30 (18) |
O1viii—Yb—F | 133.57 (15) | Na—F—Naiv | 85.04 (15) |
Symmetry codes: (i) x, −y+1/2, z; (ii) x+1/2, y, −z+1/2; (iii) x+1/2, −y+1/2, −z+1/2; (iv) x−1/2, y, −z+1/2; (v) −x, −y+1, −z+1; (vi) −x, y−1/2, −z+1; (vii) x−1, y, z; (viii) x−1/2, y, −z+3/2; (ix) x+1/2, y, −z+3/2; (x) x+1, y, z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.