Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The complete mol­ecule of the title compound, C16H18Cl2N4, is generated by inversion symmetry. The piperazine ring displays a normal chair conformation. Weak C—H...N inter­actions between neighbouring pyridine rings help to stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806031187/hb2114sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806031187/hb2114Isup2.hkl
Contains datablock I

CCDC reference: 621331

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.041
  • wR factor = 0.144
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

1,4-Bis(6-chloropyridin-3-ylmethyl)piperazine top
Crystal data top
C16H18Cl2N4Z = 1
Mr = 337.24F(000) = 176
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Melting point = 415–416 K
a = 5.802 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.144 (6) ÅCell parameters from 3095 reflections
c = 12.473 (7) Åθ = 3.3–25.0°
α = 81.72 (4)°µ = 0.39 mm1
β = 83.78 (4)°T = 295 K
γ = 70.31 (4)°Block, colourless
V = 413.4 (6) Å30.32 × 0.28 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1488 independent reflections
Radiation source: fine-focus sealed tube1230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 3.3°
ω scansh = 66
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.880, Tmax = 0.930l = 1414
3363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.0716P]
where P = (Fo2 + 2Fc2)/3
1488 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.86934 (12)0.25073 (11)0.06309 (6)0.0657 (3)
N10.4612 (4)0.3120 (3)0.18259 (17)0.0507 (5)
N20.0276 (3)0.9352 (3)0.39156 (14)0.0388 (4)
C10.6139 (4)0.4195 (4)0.13579 (18)0.0426 (5)
C20.5844 (4)0.6497 (4)0.1417 (2)0.0490 (6)
H20.69850.71710.10740.059*
C30.3816 (4)0.7757 (4)0.19982 (19)0.0484 (6)
H30.35640.93140.20570.058*
C40.2129 (4)0.6715 (4)0.25021 (17)0.0405 (5)
C50.2649 (4)0.4394 (4)0.23894 (19)0.0473 (6)
H50.15540.36620.27300.057*
C60.0172 (4)0.8043 (4)0.31156 (18)0.0462 (6)
H6A0.12850.91150.26030.055*
H6B0.09680.69600.34840.055*
C70.1665 (4)0.7830 (4)0.47861 (19)0.0520 (6)
H7A0.32440.68910.44890.062*
H7B0.07950.67890.51320.062*
C80.2053 (4)0.9195 (5)0.5616 (2)0.0567 (7)
H8A0.29820.81300.61890.068*
H8B0.30011.01720.52780.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0607 (5)0.0620 (5)0.0649 (5)0.0068 (3)0.0132 (3)0.0228 (3)
N10.0593 (12)0.0365 (10)0.0570 (12)0.0162 (9)0.0033 (9)0.0117 (8)
N20.0373 (9)0.0423 (10)0.0356 (9)0.0103 (7)0.0025 (7)0.0104 (7)
C10.0461 (12)0.0411 (12)0.0392 (11)0.0099 (9)0.0022 (9)0.0104 (9)
C20.0517 (13)0.0506 (14)0.0499 (13)0.0250 (10)0.0087 (10)0.0110 (10)
C30.0574 (14)0.0382 (12)0.0552 (14)0.0222 (10)0.0048 (10)0.0135 (10)
C40.0461 (12)0.0435 (12)0.0348 (11)0.0173 (9)0.0019 (8)0.0080 (8)
C50.0533 (13)0.0432 (12)0.0501 (13)0.0238 (10)0.0050 (10)0.0071 (10)
C60.0435 (12)0.0532 (13)0.0453 (12)0.0180 (10)0.0004 (9)0.0130 (10)
C70.0541 (14)0.0474 (13)0.0434 (13)0.0005 (10)0.0038 (10)0.0118 (10)
C80.0410 (12)0.0722 (16)0.0479 (13)0.0009 (11)0.0056 (10)0.0232 (12)
Geometric parameters (Å, º) top
Cl—C11.743 (3)C4—C51.379 (3)
N1—C11.316 (3)C4—C61.503 (3)
N1—C51.338 (3)C5—H50.9300
N2—C61.462 (3)C6—H6A0.9700
N2—C71.447 (3)C6—H6B0.9700
N2—C8i1.459 (3)C7—C81.501 (4)
C1—C21.378 (4)C7—H7A0.9700
C2—C31.369 (3)C7—H7B0.9700
C2—H20.9300C8—H8A0.9700
C3—C41.391 (3)C8—H8B0.9700
C3—H30.9300
C1—N1—C5116.3 (2)N2—C6—C4113.23 (18)
C7—N2—C8i108.46 (18)N2—C6—H6A108.9
C7—N2—C6111.81 (19)C4—C6—H6A108.9
C8i—N2—C6109.96 (18)N2—C6—H6B108.9
N1—C1—C2124.6 (2)C4—C6—H6B108.9
N1—C1—Cl115.78 (18)H6A—C6—H6B107.7
C2—C1—Cl119.62 (19)N2—C7—C8111.2 (2)
C3—C2—C1117.7 (2)N2—C7—H7A109.4
C3—C2—H2121.1C8—C7—H7A109.4
C1—C2—H2121.1N2—C7—H7B109.4
C2—C3—C4120.1 (2)C8—C7—H7B109.4
C2—C3—H3119.9H7A—C7—H7B108.0
C4—C3—H3119.9N2i—C8—C7111.5 (2)
C5—C4—C3116.4 (2)N2i—C8—H8A109.3
C5—C4—C6121.3 (2)C7—C8—H8A109.3
C3—C4—C6122.2 (2)N2i—C8—H8B109.3
N1—C5—C4124.8 (2)C7—C8—H8B109.3
N1—C5—H5117.6H8A—C8—H8B108.0
C4—C5—H5117.6
C5—N1—C1—C20.3 (3)C6—C4—C5—N1177.6 (2)
C5—N1—C1—Cl179.78 (16)C7—N2—C6—C466.1 (2)
N1—C1—C2—C30.4 (4)C8i—N2—C6—C4173.32 (19)
Cl—C1—C2—C3179.85 (17)C5—C4—C6—N2130.6 (2)
C1—C2—C3—C40.2 (4)C3—C4—C6—N250.9 (3)
C2—C3—C4—C50.8 (3)C8i—N2—C7—C857.1 (3)
C2—C3—C4—C6177.8 (2)C6—N2—C7—C8178.5 (2)
C1—N1—C5—C40.4 (3)N2—C7—C8—N2i58.8 (3)
C3—C4—C5—N11.0 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1ii0.932.583.452 (3)157
Symmetry code: (ii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds