Buy article online - an online subscription or single-article purchase is required to access this article.
The crystal structure of the title compound, trinickel(II) tellurium(VI) hexaoxide, has been reinvestigated [Newnham & Meagher (1967). Mater. Res. Bull. 2, 549-554] and confirmed to much higher precision. The structure is of the corundum (Al2O3) type, with Ni and Te replacing Al in an ordered manner. All the metal atoms occupy special positions with site symmetry 3.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 292 K
- Mean (i-O) = 0.006 Å
- R factor = 0.024
- wR factor = 0.059
- Data-to-parameter ratio = 15.6
checkCIF/PLATON results
No syntax errors found
Alert level A
PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem... n
| Author Response: The n glides would give rise to a C centring and 335 reflexes,
some as strong as above 60 sigma, breake this symmetry.
|
PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem... n
| Author Response: The n glides would give rise to a C centring and 335 reflexes,
some as strong as above 60 sigma, breake this symmetry.
|
PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem... n
| Author Response: The n glides would give rise to a C centring and 335 reflexes,
some as strong as above 60 sigma, breake this symmetry.
|
PLAT113_ALERT_2_A ADDSYM Suggests Possible Pseudo/New Spacegroup . R-3c
| Author Response: The c centring is not possible due to the present 335 reflexes
that breaks this symmetry. The centrosymmetry can not exist as two of the
Ni atoms can not relate and merge into a single one.
|
Alert level B
PLAT111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ..... 100 PerFi
Alert level C
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.77
PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.02
Alert level G
REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is
correct. If it is not, please give the correct count in the
_publ_section_exptl_refinement section of the submitted CIF.
From the CIF: _diffrn_reflns_theta_max 32.87
From the CIF: _reflns_number_total 514
Count of symmetry unique reflns 269
Completeness (_total/calc) 191.08%
TEST3: Check Friedels for noncentro structure
Estimate of Friedel pairs measured 245
Fraction of Friedel pairs measured 0.911
Are heavy atom types Z>Si present yes
4 ALERT level A = In general: serious problem
1 ALERT level B = Potentially serious problem
2 ALERT level C = Check and explain
1 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Trinickel(II) tellurium(VI) hexaoxide
top
Crystal data top
Ni3TeO6 | Dx = 6.399 Mg m−3 |
Mr = 399.73 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 2232 reflections |
Hall symbol: R 3 | θ = 4.4–32.9° |
a = 5.1087 (8) Å | µ = 20.31 mm−1 |
c = 13.767 (2) Å | T = 292 K |
V = 311.17 (8) Å3 | Prism, green |
Z = 3 | 0.09 × 0.06 × 0.04 mm |
F(000) = 552 | |
Data collection top
Oxford Xcalibur diffractometer | 514 independent reflections |
Radiation source: fine-focus sealed tube, Oxford diffraction Xcalibur3 | 506 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
ω scans | θmax = 32.9°, θmin = 4.4° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −7→7 |
Tmin = 0.500, Tmax = 1.000 | k = −7→7 |
2232 measured reflections | l = −20→20 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.028P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.024 | (Δ/σ)max < 0.001 |
wR(F2) = 0.059 | Δρmax = 3.46 e Å−3 |
S = 1.08 | Δρmin = −0.92 e Å−3 |
514 reflections | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
33 parameters | Extinction coefficient: 0.0070 (8) |
1 restraint | Absolute structure: Flack (1983), with 245 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.000 (17) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 σ(F2)
is used only for calculating R-factors(gt) etc. and is not
relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on
F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Te1 | 0.3333 | 0.6667 | 0.37517 (8) | 0.00413 (17) | |
Ni1 | 0.3333 | 0.6667 | 0.17325 (6) | 0.0040 (3) | |
Ni2 | 1.0000 | 1.0000 | 0.2144 (3) | 0.0093 (5) | |
Ni3 | 0.6667 | 0.3333 | 0.34602 (9) | 0.0064 (3) | |
O1 | 0.6298 (12) | 0.6699 (11) | 0.2845 (3) | 0.0041 (9) | |
O2 | −0.0070 (10) | 0.6347 (13) | 0.4453 (4) | 0.0066 (10) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Te1 | 0.00376 (19) | 0.00376 (19) | 0.0049 (3) | 0.00188 (9) | 0.000 | 0.000 |
Ni1 | 0.0046 (4) | 0.0046 (4) | 0.0027 (6) | 0.00231 (18) | 0.000 | 0.000 |
Ni2 | 0.0049 (3) | 0.0049 (3) | 0.0182 (13) | 0.00244 (14) | 0.000 | 0.000 |
Ni3 | 0.0041 (4) | 0.0041 (4) | 0.0111 (8) | 0.00205 (18) | 0.000 | 0.000 |
O1 | 0.0015 (17) | 0.006 (2) | 0.0038 (16) | 0.0007 (16) | −0.0004 (12) | 0.0005 (13) |
O2 | 0.007 (2) | 0.006 (2) | 0.0068 (15) | 0.0036 (17) | −0.0021 (14) | −0.0032 (14) |
Geometric parameters (Å, º) top
Te1—O2i | 1.923 (5) | Ni2—O1vi | 2.040 (6) |
Te1—O2 | 1.923 (5) | Ni2—O1 | 2.040 (6) |
Te1—O2ii | 1.923 (5) | Ni2—O1vii | 2.040 (6) |
Te1—O1i | 1.956 (5) | Ni2—O2iv | 2.139 (7) |
Te1—O1ii | 1.956 (5) | Ni2—O2viii | 2.139 (7) |
Te1—O1 | 1.956 (5) | Ni2—O2ix | 2.139 (7) |
Ni1—O2iii | 2.032 (6) | Ni3—O1x | 2.008 (6) |
Ni1—O2iv | 2.032 (6) | Ni3—O1xi | 2.008 (6) |
Ni1—O2v | 2.032 (6) | Ni3—O1 | 2.008 (6) |
Ni1—O1ii | 2.148 (5) | Ni3—O2xii | 2.110 (5) |
Ni1—O1 | 2.148 (5) | Ni3—O2xiii | 2.110 (5) |
Ni1—O1i | 2.148 (5) | Ni3—O2ii | 2.110 (5) |
| | | |
O2i—Te1—O2 | 97.00 (16) | O1vi—Ni2—O2viii | 87.9 (3) |
O2i—Te1—O2ii | 97.00 (16) | O1—Ni2—O2viii | 166.9 (3) |
O2—Te1—O2ii | 97.00 (16) | O1vii—Ni2—O2viii | 89.9 (2) |
O2i—Te1—O1i | 169.85 (18) | O2iv—Ni2—O2viii | 81.2 (3) |
O2—Te1—O1i | 86.8 (2) | O1vi—Ni2—O2ix | 166.9 (3) |
O2ii—Te1—O1i | 91.8 (2) | O1—Ni2—O2ix | 89.9 (2) |
O2i—Te1—O1ii | 86.8 (2) | O1vii—Ni2—O2ix | 87.9 (3) |
O2—Te1—O1ii | 91.8 (2) | O2iv—Ni2—O2ix | 81.2 (3) |
O2ii—Te1—O1ii | 169.85 (18) | O2viii—Ni2—O2ix | 81.2 (3) |
O1i—Te1—O1ii | 83.6 (2) | O1x—Ni3—O1xi | 103.49 (17) |
O2i—Te1—O1 | 91.8 (2) | O1x—Ni3—O1 | 103.49 (17) |
O2—Te1—O1 | 169.85 (18) | O1xi—Ni3—O1 | 103.49 (17) |
O2ii—Te1—O1 | 86.8 (2) | O1x—Ni3—O2xii | 162.8 (3) |
O1i—Te1—O1 | 83.6 (2) | O1xi—Ni3—O2xii | 80.65 (12) |
O1ii—Te1—O1 | 83.6 (2) | O1—Ni3—O2xii | 91.52 (18) |
O2iii—Ni1—O2iv | 103.96 (18) | O1x—Ni3—O2xiii | 80.65 (12) |
O2iii—Ni1—O2v | 103.96 (18) | O1xi—Ni3—O2xiii | 91.52 (17) |
O2iv—Ni1—O2v | 103.96 (18) | O1—Ni3—O2xiii | 162.8 (3) |
O2iii—Ni1—O1ii | 87.87 (13) | O2xii—Ni3—O2xiii | 82.6 (2) |
O2iv—Ni1—O1ii | 89.53 (19) | O1x—Ni3—O2ii | 91.52 (18) |
O2v—Ni1—O1ii | 159.0 (3) | O1xi—Ni3—O2ii | 162.8 (3) |
O2iii—Ni1—O1 | 159.0 (3) | O1—Ni3—O2ii | 80.65 (12) |
O2iv—Ni1—O1 | 87.87 (13) | O2xii—Ni3—O2ii | 82.6 (2) |
O2v—Ni1—O1 | 89.53 (19) | O2xiii—Ni3—O2ii | 82.6 (2) |
O1ii—Ni1—O1 | 74.8 (2) | Te1—O1—Ni3 | 97.3 (2) |
O2iii—Ni1—O1i | 89.53 (19) | Te1—O1—Ni2 | 134.6 (3) |
O2iv—Ni1—O1i | 159.0 (3) | Te1—O1—Ni1 | 85.1 (3) |
O2v—Ni1—O1i | 87.87 (13) | Ni3—O1—Ni2 | 117.5 (3) |
O1ii—Ni1—O1i | 74.8 (2) | Ni3—O1—Ni1 | 131.4 (2) |
O1—Ni1—O1i | 74.8 (2) | Ni2—O1—Ni1 | 91.6 (3) |
O1vi—Ni2—O1 | 99.5 (2) | Te1—O2—Ni1xiv | 122.0 (3) |
O1vi—Ni2—O1vii | 99.5 (2) | Te1—O2—Ni3xv | 95.0 (2) |
O1—Ni2—O1vii | 99.5 (2) | Te1—O2—Ni2xvi | 137.6 (3) |
O1vi—Ni2—O2iv | 89.90 (19) | Ni1xiv—O2—Ni3xv | 125.7 (2) |
O1—Ni2—O2iv | 87.9 (3) | Ni1xiv—O2—Ni2xvi | 92.1 (3) |
O1vii—Ni2—O2iv | 166.9 (3) | Ni3xv—O2—Ni2xvi | 81.65 (18) |
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, x−y+1, z; (iii) −x+y−2/3, −x+2/3, z−1/3; (iv) −y+4/3, x−y+5/3, z−1/3; (v) x+1/3, y−1/3, z−1/3; (vi) −x+y+1, −x+2, z; (vii) −y+2, x−y+1, z; (viii) x+4/3, y+2/3, z−1/3; (ix) −x+y+1/3, −x+2/3, z−1/3; (x) −y+1, x−y, z; (xi) −x+y+1, −x+1, z; (xii) x+1, y, z; (xiii) −x+y, −x, z; (xiv) x−1/3, y+1/3, z+1/3; (xv) x−1, y, z; (xvi) x−4/3, y−2/3, z+1/3. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.