Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Chiral crystals of the title salt, [Pd(C20H22N4O2)2]Cl2, contain [Pd(L1)2]2+ cations [L1 is (S,S)-1,2-dimethoxy-1,2-bis­(1-methyl-1H-benzimidazol-2-yl)ethane] separated by disordered Cl- anions. Two geometrically constraining L1 ligands coordinate each PdII ion facially to yield a distorted tetra­gonal N4(imine)+O2(meth­oxy) coordination geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028242/hb6256sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028242/hb6256Isup2.hkl
Contains datablock I

CCDC reference: 287562

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.010 Å
  • Some non-H atoms missing
  • Disorder in solvent or counterion
  • R factor = 0.051
  • wR factor = 0.156
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT051_ALERT_1_B Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 9.89 Perc. PLAT111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ..... 88 PerFit
Alert level C CHEMW03_ALERT_2_C The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_weight 878.15 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 40.00 480.44 H 1.01 44.00 44.35 N 14.01 8.00 112.06 O 16.00 4.00 64.00 Cl 35.45 1.05 37.23 Pd 106.42 1.00 106.42 Calculated formula weight 844.49 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT043_ALERT_1_C Check Reported Molecular Weight ................ 878.15 PLAT044_ALERT_1_C Calculated and Reported Dx Differ .............. ? PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.07 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C36 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 26.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 10 PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 87.00 A   3 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 12
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C40 H44 Cl2 N8 O4 Pd1 Atom count from the _atom_site data: C40 H44 Cl1.05 N8 O4 Pd1 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C40 H44 Cl2 N8 O4 Pd TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 80.00 80.00 0.00 H 88.00 88.00 0.00 Cl 4.00 2.10 1.90 N 16.00 16.00 0.00 O 8.00 8.00 0.00 Pd 2.00 2.00 0.00 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.01 From the CIF: _reflns_number_total 7194 Count of symmetry unique reflns 4395 Completeness (_total/calc) 163.69% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2799 Fraction of Friedel pairs measured 0.637 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Our continuing effort to explore the chemistry of bis(imidazole) and bis(benzimidazole) compounds bridged by alkyl or aryl groups has led to their use as geometrically constraining ligands (Knapp et al., 1990; Stibrany, Lobanov et al., 2004). With several first-row transition metal ions, for example, we have found that certain of these ligands yield mononuclear complexes which are remarkably similar in coordination number and in coordination geometry (Stibrany, Lobanov et al., 2004; Stibrany et al., 2004b). Ligands of this type have also been used to prepare several polynuclear complexes with CuII, all of which contain planar Cu2O2 groups (Isele et al., 2005). Recently, we reported the structure of the chiral facially coordinated tetragonal 4 + 2 CuII complex, [Cu(L1)2]2+·2BF4 bis(acetonitrile) solvate (Stibrany et al., 2004a), where L1 is (S,S)-1,2-bis(1-methylbenzimidazol-2-yl)-1',2'-bis(methoxy)ethane. Here, we report the structure of the title compound, (I), [Pd(L1)2]2+·2Cl, which extends our exploration of these geometrically constraining ligands to metals in the second-row transition series.

Crystals of (I) contain [Pd(L1)2]2+ cations (Fig. 1) separated by disordered Cl anions. Each cation is coordinated facially by the imine N atoms of the planar benzimidazole fragments and by one of the methoxy O atoms from each of two L1 ligands, to yield a distorted tetragonal N4+O2 coordination geometry, in which the N atoms form a nearly square-planar base (Table 1). The axial O atoms are displaced substantially from the axis normal to the PdN4 plane towards the ligand to which they are attached. These geometric features of the coordination geometry are qualitatively similar to those observed for the [Cu(L1)2]2+ cation (Stibrany et al., 2004a), the major differences being the M—O distances, which are substantially longer in the Pd cation, and several of the N—M—O angles, which indicate a greater deviation from regular tetragonal symmetry for the Pd species (Table 1). Similarities between the two cations extend to their X-SHAPE in profile (Fig. 2a), the V– or butterfly shape of the bound ligands, and the distorted-boat conformation of the seven-membered chelate rings (Stibrany et al., 2004a). Comparable geometric features have also been observed in related bis(benzimidazole)copper(II) complexes (Isele et al., 2002). Ligand L1, with three torsional degrees of freedom, may be characterized by the torsion angles χ1, χ2, and χ3, which are shown in the scheme of L1 and defined in the legend for Table 1. In both the [Cu(L1)2]2+ and [Pd(L1)2]2+ species, the conformations of the individual ligands of a given cation are clearly distinguished by their χ1 values, one of which is approximately 10° smaller than the other. However, the corresponding torsion angles for the Cu and Pd species differ on average by only about 2.5°, which gives an alternate measure of the degree to which L1 is a geometrically constraining ligand.

Six-coordinate PdII species are uncommon and, based on a search of the Cambridge Structural Database (Version 5.25; Allen, 2002), compound (I) contains what is possibly the first structurally characterized example of a PdII complex with N4+O2 donation. The Pd—O distances of 2.867 (4) and 2.871 (4) Å are long and there is some question regarding the extent to which these interactions are attractive. Thus, in two six-coordinate PdII complexes containing axial methoxy groups, linkages of 2.632 (7) and 2.671 (7) Å were considered bonding, while corresponding lengths of 2.887 and 3.025 Å were considered to be non-bonding (Sun et al., 1998). However, with S(thioether) as an axial ligand in a tetragonally distorted PdII complex formed with two 10-crown-S3 thioether ligands, the axial S atoms were found to influence the electronic absorption spectrum of the complex, despite the relatively long PdIIS(thioether) distance of 3.11 Å (Grant et al., 1991).

PdIIN(benzimidazole) linkages are rare. We are aware of only two examples, both in complexes with distorted square-planar coordination geometry. In these species, the PdIIN(benzimidazole) distances of 2.151 (4) and 2.117 (4) Å (Figge et al., 2002) are substantially longer than the corresponding linkages in (I), where the Pd—N distances compare favorably with the PdIIN(imidazole) distances, which range from 1.982 (4) to 2.029 (4) Å, reported for several square-planar complexes (Dahan, 1976; Liu et al., 2001; Kurdziel & Glowiak, 2002). Lastly, we note that each cation contains three weak C—H···O interactions, two inter-ligand and one intra-ligand, between the methoxy O atoms and the H atoms of the phenyl fragments from three of the four benzimidazole groups (Table 2).

In the crystal structure of (I), the cations form layers parallel to the (100) planes (Fig. 2) and centered about the plane x = 0. The planes of cations present hydrophobic surfaces, consisting largely of atoms from the methyl and phenyl fragments, to the Cl anions, which lie between them (Fig. 3). The relatively large size of the cations, coupled with their essentially non-polar surfaces, precludes strong Coulombic and/or ion–dipole interactions with the Cl anions, consistent with the observed disorder of the Cl layer. Within a given layer, the cations are linked by edge-over-edge ππ interactions along the b cell direction, and by C—H···π interactions along both the b and c cell directions. Packing of the cations may be visualized qualitatively by focusing on the relative orientation of the benzimidazole planes of adjacent cations, which vary from approximately parallel to approximately perpendicular (Fig. 2).

Experimental top

Triethylorthoformate (1 ml) was added to a 50 ml Erlenmeyer flask containing a yellow–orange solution of bis(acetonitrile)palladium(II) dichloride (30 mg, 0.12 mmol) and (S,S)-1,2-bis(1-methylbenzimidazol-2-yl)-1',2'-bis(methoxy)ethane (81 mg, 0.23 mmol) in acetonitrile (10 ml). After gentle warming of solution for 5 min, slow evaporation afforded pale-yellow plates of (I) (yield: 71 mg, 67%). IR (KBr pellet, ν, cm−1): 3435 (br), 2942 (w), 1645 (w), 1533 (m), 1477 (m), 1334(m), 1155 (w), 746 (m).

Refinement top

Crystals of (I) were prepared using enantiomerically pure L1, and are, therefore, of necessity chiral, excluding the possibility that the space group is P21/m. Initial solution of the structure clearly revealed the cation and four potential sites for Cl anions in the asymmetric unit. This structure was refined to convergence with four partially occupied Cl sites to yield l.05 Cl anions per cation. Examination of the structure at this point using PLATON (Spek, 2003) revealed two voids per asymmetric unit, one of 87 Å3 and one of 66 Å3, both located in the space between the cation layers and therefore likely to contain the missing electron density from any remaining Cl anions. At this point, a modified data set was generated using the SQUEEZE algorithm (Spek, 2003; van der Sluis & Spek, 1990) to subtract the contribution of the electron density in the voids from the structure factors and, using the modified data set, the structure was re-refined to convergence. PLATON estimated a total integrated electron count of 19 for the two voids, which, when added to the 18.9 electrons corresponding to 1.05 Cl ions on the four disordered sites, accounts well for the electron count of 36 expected for two Cl ions. H atoms were positioned geometrically and refined using a riding model, with C—H distances in the range 0.93–0.98 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of a cation in (I), showing 25% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view, approximately normal to (100), of a cation layer in (I). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view, approximately along the b axis direction, of the structure of (I). H atoms have been omitted for clarity.
Bis[(S,S)-1,2-dimethoxy-1,2-bis(1-methyl-1H-benzimidazol-2- yl)ethane]palladium(II) dichloride top
Crystal data top
[Pd(C20H22N4O2)2]Cl2F(000) = 904
Mr = 878.15Dx = 1.238 Mg m3
Dm = 1.25 (1) Mg m3
Dm measured by flotation in CCl4–cyclohexane
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1022 reflections
a = 13.0985 (4) Åθ = 3.7–24.8°
b = 10.7801 (4) ŵ = 0.55 mm1
c = 17.0783 (6) ÅT = 297 K
β = 102.440 (3)°Cleaved plate, pale yellow
V = 2354.89 (14) Å30.44 × 0.23 × 0.14 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7194 independent reflections
Radiation source: fine-focus sealed tube6863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS, Blessing 1995)
h = 1515
Tmin = 0.779, Tmax = 0.926k = 1112
16641 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.13P)2 + 1.0352P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7194 reflectionsΔρmax = 0.97 e Å3
522 parametersΔρmin = 0.47 e Å3
25 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
[Pd(C20H22N4O2)2]Cl2V = 2354.89 (14) Å3
Mr = 878.15Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.0985 (4) ŵ = 0.55 mm1
b = 10.7801 (4) ÅT = 297 K
c = 17.0783 (6) Å0.44 × 0.23 × 0.14 mm
β = 102.440 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7194 independent reflections
Absorption correction: multi-scan
(SADABS, Blessing 1995)
6863 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.926Rint = 0.025
16641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.157Δρmax = 0.97 e Å3
S = 1.00Δρmin = 0.47 e Å3
7194 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
522 parametersAbsolute structure parameter: 0.04 (4)
25 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd0.99532 (2)0.50860 (8)0.742718 (19)0.03922 (15)
Cl10.4542 (3)0.3524 (4)0.8538 (2)0.0531 (9)0.35
Cl20.5462 (6)0.6933 (8)0.6604 (5)0.0751 (18)0.25
Cl30.4576 (6)0.8501 (9)0.8073 (5)0.087 (3)0.25
Cl40.5965 (9)0.9201 (12)0.5782 (6)0.095 (4)0.20
O10.7778 (3)0.4668 (5)0.7387 (3)0.0600 (12)
O20.7576 (4)0.3005 (6)0.5512 (3)0.0702 (13)
O31.2581 (4)0.6592 (6)0.9506 (3)0.0676 (14)
O41.2002 (3)0.5960 (5)0.7366 (3)0.0585 (11)
N110.7604 (4)0.6061 (6)0.5498 (3)0.0551 (13)
N130.9083 (3)0.5652 (5)0.6370 (3)0.0448 (10)
N210.9156 (4)0.1513 (5)0.6471 (3)0.0561 (12)
N230.9758 (4)0.3308 (4)0.7038 (3)0.0454 (10)
N311.2001 (5)0.4064 (6)0.9573 (3)0.0650 (14)
N331.0778 (4)0.4562 (5)0.8544 (3)0.0442 (10)
N411.1055 (4)0.8486 (5)0.8348 (3)0.0580 (13)
N431.0200 (3)0.6854 (5)0.7783 (3)0.0435 (10)
C10.7519 (5)0.4436 (7)0.6556 (4)0.0553 (15)
H10.67630.45430.63710.066*
C110.8404 (5)0.6832 (6)0.5310 (3)0.0519 (14)
C120.8063 (4)0.5398 (6)0.6143 (3)0.0491 (18)
C130.9283 (5)0.6569 (6)0.5850 (3)0.0480 (13)
C141.0219 (5)0.7133 (6)0.5805 (4)0.0562 (15)
H141.08430.69360.61590.067*
C151.0175 (6)0.8010 (7)0.5200 (4)0.0615 (16)
H151.07900.83940.51420.074*
C160.9244 (6)0.8332 (7)0.4679 (4)0.0692 (19)
H160.92390.89520.42990.083*
C170.8335 (6)0.7738 (8)0.4725 (4)0.0687 (18)
H170.77030.79320.43810.082*
C180.6504 (6)0.5980 (9)0.5021 (5)0.081 (2)
H18A0.64820.54590.45620.121*
H18B0.62590.67950.48470.121*
H18C0.60640.56350.53490.121*
C1A0.6915 (7)0.4597 (13)0.7771 (6)0.107 (4)
H1A10.63850.51760.75240.160*
H1A20.71450.47960.83290.160*
H1A30.66320.37720.77180.160*
C20.7800 (5)0.3121 (6)0.6350 (4)0.0549 (15)
H20.73380.25500.65570.066*
C211.0210 (5)0.1357 (6)0.6744 (4)0.0552 (14)
C220.8889 (5)0.2686 (6)0.6644 (3)0.0487 (13)
C231.0596 (5)0.2486 (6)0.7100 (3)0.0476 (13)
C241.1653 (5)0.2659 (7)0.7392 (4)0.0557 (15)
H241.19080.34030.76330.067*
C251.2333 (6)0.1686 (7)0.7315 (4)0.0667 (17)
H251.30510.17830.74960.080*
C261.1928 (7)0.0572 (9)0.6965 (5)0.082 (2)
H261.23890.00700.69290.098*
C271.0876 (7)0.0382 (6)0.6670 (4)0.070 (2)
H271.06220.03650.64320.084*
C280.8479 (6)0.0542 (8)0.6057 (5)0.077 (2)
H28A0.83610.06750.54890.116*
H28B0.78230.05610.62210.116*
H28C0.88060.02500.61870.116*
C2A0.6526 (7)0.2581 (12)0.5147 (7)0.111 (4)
H2A10.64770.17040.52300.166*
H2A20.63810.27540.45830.166*
H2A30.60280.30060.53890.166*
C31.2483 (5)0.5817 (7)0.8819 (4)0.0570 (15)
H31.31680.54580.88100.068*
C311.1160 (6)0.3343 (7)0.9624 (4)0.0678 (19)
C321.1751 (4)0.4791 (6)0.8940 (3)0.0506 (17)
C331.0391 (5)0.3678 (6)0.8980 (3)0.0500 (13)
C340.9355 (5)0.3161 (6)0.8884 (4)0.0561 (15)
H340.88220.33690.84500.067*
C350.9197 (7)0.2365 (8)0.9451 (4)0.071 (2)
H350.85300.20430.94140.085*
C361.0003 (12)0.1994 (9)1.0101 (6)0.102 (4)
H360.98580.14131.04650.122*
C371.0967 (9)0.2462 (9)1.0205 (5)0.090 (3)
H371.14930.22261.06370.108*
C381.3038 (6)0.4003 (10)1.0151 (5)0.085 (2)
H38A1.35860.39520.98580.128*
H38B1.30600.32841.04850.128*
H38C1.31330.47351.04790.128*
C3A1.3629 (7)0.7127 (13)0.9786 (6)0.100 (3)
H3A11.41470.65360.97120.150*
H3A21.37300.73321.03440.150*
H3A31.36920.78640.94840.150*
C41.2142 (5)0.6643 (7)0.8080 (4)0.0571 (15)
H41.26910.72590.80780.069*
C411.0006 (5)0.8795 (6)0.8207 (4)0.0541 (14)
C421.1127 (4)0.7331 (6)0.8082 (3)0.0474 (13)
C430.9453 (4)0.7743 (5)0.7837 (3)0.0445 (12)
C440.8364 (5)0.7757 (6)0.7609 (3)0.0533 (14)
H440.79980.70720.73640.064*
C450.7852 (5)0.8801 (7)0.7755 (4)0.0604 (16)
H450.71250.88190.76160.073*
C460.8398 (6)0.9857 (7)0.8113 (5)0.073 (2)
H460.80241.05630.81900.088*
C470.9483 (6)0.9865 (7)0.8354 (4)0.069 (2)
H470.98421.05530.86020.083*
C481.1908 (6)0.9315 (8)0.8757 (5)0.079 (2)
H48A1.20000.92240.93270.118*
H48B1.17311.01600.86100.118*
H48C1.25460.90980.85990.118*
C4A1.2919 (6)0.5900 (11)0.7035 (5)0.090 (3)
H4A11.29640.66360.67270.136*
H4A21.28780.51850.66940.136*
H4A31.35280.58390.74610.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0373 (2)0.0393 (2)0.0410 (2)0.00395 (19)0.00849 (13)0.0052 (3)
Cl10.0365 (17)0.063 (3)0.056 (2)0.0051 (17)0.0035 (15)0.0043 (18)
Cl20.075 (4)0.079 (5)0.071 (4)0.010 (4)0.016 (3)0.006 (3)
Cl30.075 (4)0.108 (7)0.080 (5)0.055 (5)0.021 (4)0.014 (4)
Cl40.088 (6)0.099 (8)0.081 (6)0.050 (6)0.021 (5)0.016 (6)
O10.049 (2)0.077 (3)0.060 (2)0.008 (2)0.0238 (18)0.0108 (19)
O20.053 (2)0.086 (4)0.066 (3)0.002 (2)0.001 (2)0.030 (3)
O30.060 (3)0.081 (4)0.055 (3)0.013 (3)0.004 (2)0.017 (2)
O40.042 (2)0.078 (3)0.058 (2)0.004 (2)0.0156 (18)0.014 (2)
N110.047 (3)0.069 (4)0.045 (3)0.005 (3)0.001 (2)0.003 (2)
N130.043 (2)0.050 (2)0.041 (2)0.005 (2)0.0071 (18)0.0044 (19)
N210.069 (3)0.040 (3)0.060 (3)0.011 (2)0.014 (2)0.010 (2)
N230.053 (3)0.041 (2)0.043 (2)0.008 (2)0.012 (2)0.0065 (19)
N310.073 (4)0.068 (4)0.048 (3)0.005 (3)0.001 (3)0.002 (3)
N330.048 (2)0.044 (2)0.041 (2)0.000 (2)0.0106 (19)0.0052 (18)
N410.059 (3)0.050 (3)0.061 (3)0.009 (3)0.005 (2)0.002 (2)
N430.041 (2)0.043 (3)0.047 (2)0.009 (2)0.0102 (19)0.010 (2)
C10.045 (3)0.064 (4)0.057 (3)0.004 (3)0.011 (3)0.008 (3)
C110.058 (3)0.054 (4)0.042 (3)0.007 (3)0.006 (2)0.008 (3)
C120.038 (2)0.056 (5)0.051 (3)0.006 (2)0.005 (2)0.012 (2)
C130.054 (3)0.050 (3)0.042 (3)0.001 (3)0.014 (2)0.009 (2)
C140.056 (3)0.058 (4)0.054 (3)0.004 (3)0.009 (3)0.011 (3)
C150.068 (4)0.060 (4)0.061 (4)0.018 (3)0.024 (3)0.007 (3)
C160.102 (6)0.063 (4)0.047 (3)0.003 (4)0.027 (4)0.002 (3)
C170.078 (5)0.079 (5)0.049 (3)0.005 (4)0.013 (3)0.001 (3)
C180.060 (4)0.096 (6)0.075 (5)0.006 (4)0.011 (3)0.002 (4)
C1A0.074 (5)0.167 (12)0.092 (6)0.015 (6)0.046 (4)0.015 (6)
C20.048 (3)0.050 (3)0.067 (4)0.019 (3)0.013 (3)0.010 (3)
C210.058 (4)0.054 (4)0.053 (3)0.006 (3)0.011 (3)0.001 (3)
C220.054 (3)0.048 (3)0.046 (3)0.007 (3)0.015 (2)0.002 (2)
C230.057 (3)0.044 (3)0.042 (3)0.005 (3)0.011 (2)0.002 (2)
C240.057 (3)0.060 (4)0.048 (3)0.005 (3)0.008 (3)0.008 (3)
C250.069 (4)0.061 (4)0.066 (4)0.011 (4)0.005 (3)0.002 (3)
C260.091 (6)0.080 (6)0.074 (5)0.033 (4)0.016 (4)0.005 (4)
C270.099 (5)0.033 (5)0.071 (4)0.010 (3)0.004 (4)0.007 (3)
C280.080 (5)0.058 (4)0.089 (5)0.018 (4)0.009 (4)0.018 (4)
C2A0.070 (5)0.124 (9)0.116 (8)0.010 (6)0.028 (5)0.040 (7)
C30.045 (3)0.072 (4)0.049 (3)0.005 (3)0.001 (2)0.005 (3)
C310.096 (5)0.067 (4)0.041 (3)0.008 (4)0.016 (3)0.006 (3)
C320.050 (3)0.060 (5)0.041 (2)0.010 (3)0.008 (2)0.004 (2)
C330.065 (3)0.040 (3)0.048 (3)0.001 (3)0.018 (3)0.006 (2)
C340.068 (4)0.054 (4)0.053 (3)0.012 (3)0.026 (3)0.012 (3)
C350.099 (6)0.064 (4)0.056 (4)0.020 (4)0.030 (4)0.011 (4)
C360.188 (11)0.063 (5)0.071 (5)0.039 (7)0.062 (7)0.015 (4)
C370.157 (9)0.066 (5)0.043 (4)0.004 (6)0.013 (5)0.011 (4)
C380.073 (5)0.095 (6)0.076 (5)0.011 (5)0.009 (4)0.009 (4)
C3A0.072 (5)0.124 (9)0.091 (6)0.012 (5)0.012 (4)0.017 (6)
C40.043 (3)0.071 (4)0.056 (3)0.008 (3)0.009 (3)0.008 (3)
C410.064 (4)0.046 (3)0.050 (3)0.004 (3)0.007 (3)0.000 (3)
C420.044 (3)0.048 (3)0.049 (3)0.011 (3)0.007 (2)0.005 (2)
C430.054 (3)0.039 (3)0.041 (3)0.002 (2)0.009 (2)0.001 (2)
C440.053 (3)0.056 (4)0.050 (3)0.006 (3)0.008 (3)0.008 (3)
C450.050 (3)0.061 (4)0.070 (4)0.008 (3)0.013 (3)0.008 (3)
C460.078 (4)0.051 (5)0.092 (5)0.024 (4)0.021 (4)0.004 (4)
C470.078 (4)0.048 (5)0.078 (4)0.002 (3)0.011 (3)0.016 (3)
C480.068 (4)0.067 (5)0.094 (5)0.022 (4)0.002 (4)0.019 (4)
C4A0.051 (4)0.146 (9)0.084 (5)0.002 (5)0.034 (4)0.019 (5)
Geometric parameters (Å, º) top
Pd—N432.006 (5)C2—H20.9800
Pd—N132.011 (5)C21—C271.389 (10)
Pd—N232.027 (5)C21—C231.405 (9)
Pd—N332.058 (5)C23—C241.380 (9)
Pd—O42.867 (4)C24—C251.400 (10)
Pd—O12.871 (4)C24—H240.9300
O1—C11.408 (7)C25—C261.394 (13)
O1—C1A1.425 (8)C25—H250.9300
O2—C21.403 (8)C26—C271.378 (12)
O2—C2A1.455 (9)C26—H260.9300
O3—C31.423 (8)C27—H270.9300
O3—C3A1.470 (10)C28—H28A0.9600
O4—C41.402 (8)C28—H28B0.9600
O4—C4A1.436 (7)C28—H28C0.9600
N11—C121.341 (8)C2A—H2A10.9600
N11—C111.428 (9)C2A—H2A20.9600
N11—C181.498 (9)C2A—H2A30.9600
N13—C121.337 (7)C3—C321.508 (10)
N13—C131.391 (8)C3—C41.530 (10)
N21—C221.361 (8)C3—H30.9800
N21—C211.369 (8)C31—C331.370 (10)
N21—C281.454 (9)C31—C371.435 (11)
N23—C221.367 (8)C33—C341.443 (9)
N23—C231.396 (8)C34—C351.342 (10)
N31—C321.318 (8)C34—H340.9300
N31—C311.366 (10)C35—C361.415 (16)
N31—C381.498 (9)C35—H350.9300
N33—C321.331 (7)C36—C371.336 (16)
N33—C331.373 (8)C36—H360.9300
N41—C421.335 (8)C37—H370.9300
N41—C411.384 (9)C38—H38A0.9600
N41—C481.483 (9)C38—H38B0.9600
N43—C421.316 (7)C38—H38C0.9600
N43—C431.386 (7)C3A—H3A10.9600
C1—C121.517 (9)C3A—H3A20.9600
C1—C21.524 (9)C3A—H3A30.9600
C1—H10.9800C4—C421.523 (9)
C11—C131.342 (9)C4—H40.9800
C11—C171.386 (10)C41—C471.392 (10)
C13—C141.385 (9)C41—C431.418 (8)
C14—C151.393 (10)C43—C441.396 (8)
C14—H140.9300C44—C451.360 (10)
C15—C161.389 (11)C44—H440.9300
C15—H150.9300C45—C461.411 (11)
C16—C171.370 (11)C45—H450.9300
C16—H160.9300C46—C471.392 (11)
C17—H170.9300C46—H460.9300
C18—H18A0.9600C47—H470.9300
C18—H18B0.9600C48—H48A0.9600
C18—H18C0.9600C48—H48B0.9600
C1A—H1A10.9600C48—H48C0.9600
C1A—H1A20.9600C4A—H4A10.9600
C1A—H1A30.9600C4A—H4A20.9600
C2—C221.484 (9)C4A—H4A30.9600
N43—Pd—N1390.4 (2)C23—C24—H24120.9
N43—Pd—N23177.27 (18)C25—C24—H24120.9
N13—Pd—N2389.2 (2)C26—C25—C24119.7 (7)
N43—Pd—N3387.8 (2)C26—C25—H25120.2
N13—Pd—N33176.39 (18)C24—C25—H25120.2
N23—Pd—N3392.8 (2)C27—C26—C25122.9 (7)
N43—Pd—O466.92 (15)C27—C26—H26118.5
N13—Pd—O4102.79 (16)C25—C26—H26118.5
N23—Pd—O4110.57 (16)C26—C27—C21116.9 (6)
N33—Pd—O479.37 (16)C26—C27—H27121.6
N43—Pd—O1104.51 (16)C21—C27—H27121.6
N13—Pd—O170.04 (16)N21—C28—H28A109.5
N23—Pd—O177.85 (16)N21—C28—H28B109.5
N33—Pd—O1107.40 (15)H28A—C28—H28B109.5
O4—Pd—O1169.30 (15)N21—C28—H28C109.5
C1—O1—C1A114.3 (6)H28A—C28—H28C109.5
C1—O1—Pd94.2 (3)H28B—C28—H28C109.5
C1A—O1—Pd151.5 (5)O2—C2A—H2A1109.5
C2—O2—C2A115.8 (6)O2—C2A—H2A2109.5
C3—O3—C3A114.3 (6)H2A1—C2A—H2A2109.5
C4—O4—C4A113.7 (5)O2—C2A—H2A3109.5
C4—O4—Pd95.1 (3)H2A1—C2A—H2A3109.5
C4A—O4—Pd150.3 (5)H2A2—C2A—H2A3109.5
C12—N11—C11105.9 (5)O3—C3—C32105.3 (5)
C12—N11—C18128.6 (6)O3—C3—C4107.3 (6)
C11—N11—C18125.3 (6)C32—C3—C4117.3 (5)
C12—N13—C13105.9 (5)O3—C3—H3108.9
C12—N13—Pd122.4 (4)C32—C3—H3108.9
C13—N13—Pd129.8 (4)C4—C3—H3108.9
C22—N21—C21109.1 (5)N31—C31—C33105.2 (6)
C22—N21—C28128.0 (6)N31—C31—C37133.2 (8)
C21—N21—C28122.8 (6)C33—C31—C37121.4 (8)
C22—N23—C23106.5 (5)N31—C32—N33110.4 (6)
C22—N23—Pd131.2 (4)N31—C32—C3119.7 (5)
C23—N23—Pd122.2 (4)N33—C32—C3129.3 (5)
C32—N31—C31109.2 (6)C31—C33—N33109.0 (6)
C32—N31—C38126.6 (7)C31—C33—C34120.0 (6)
C31—N31—C38124.2 (6)N33—C33—C34130.9 (6)
C32—N33—C33106.1 (5)C35—C34—C33116.9 (7)
C32—N33—Pd132.4 (4)C35—C34—H34121.5
C33—N33—Pd120.8 (4)C33—C34—H34121.5
C42—N41—C41107.7 (5)C34—C35—C36122.8 (8)
C42—N41—C48128.4 (6)C34—C35—H35118.6
C41—N41—C48123.8 (6)C36—C35—H35118.6
C42—N43—C43108.0 (5)C37—C36—C35121.4 (8)
C42—N43—Pd124.3 (4)C37—C36—H36119.3
C43—N43—Pd127.4 (4)C35—C36—H36119.3
O1—C1—C12108.2 (5)C36—C37—C31117.4 (9)
O1—C1—C2112.4 (6)C36—C37—H37121.3
C12—C1—C2111.6 (5)C31—C37—H37121.3
O1—C1—H1108.2N31—C38—H38A109.5
C12—C1—H1108.2N31—C38—H38B109.5
C2—C1—H1108.2H38A—C38—H38B109.5
C13—C11—C17123.9 (6)N31—C38—H38C109.5
C13—C11—N11106.5 (5)H38A—C38—H38C109.5
C17—C11—N11129.5 (6)H38B—C38—H38C109.5
N13—C12—N11111.9 (5)O3—C3A—H3A1109.5
N13—C12—C1123.1 (5)O3—C3A—H3A2109.5
N11—C12—C1125.0 (5)H3A1—C3A—H3A2109.5
C11—C13—C14120.5 (6)O3—C3A—H3A3109.5
C11—C13—N13109.7 (5)H3A1—C3A—H3A3109.5
C14—C13—N13129.6 (6)H3A2—C3A—H3A3109.5
C13—C14—C15116.3 (6)O4—C4—C42107.9 (5)
C13—C14—H14121.9O4—C4—C3111.8 (6)
C15—C14—H14121.9C42—C4—C3112.4 (5)
C16—C15—C14122.4 (6)O4—C4—H4108.2
C16—C15—H15118.8C42—C4—H4108.2
C14—C15—H15118.8C3—C4—H4108.2
C17—C16—C15120.0 (7)N41—C41—C47132.6 (6)
C17—C16—H16120.0N41—C41—C43106.1 (5)
C15—C16—H16120.0C47—C41—C43121.3 (6)
C16—C17—C11116.6 (7)N43—C42—N41111.7 (5)
C16—C17—H17121.7N43—C42—C4122.8 (5)
C11—C17—H17121.7N41—C42—C4125.4 (5)
N11—C18—H18A109.5N43—C43—C44133.0 (6)
N11—C18—H18B109.5N43—C43—C41106.4 (5)
H18A—C18—H18B109.5C44—C43—C41120.6 (6)
N11—C18—H18C109.5C45—C44—C43118.2 (6)
H18A—C18—H18C109.5C45—C44—H44120.9
H18B—C18—H18C109.5C43—C44—H44120.9
O1—C1A—H1A1109.5C44—C45—C46121.5 (6)
O1—C1A—H1A2109.5C44—C45—H45119.3
H1A1—C1A—H1A2109.5C46—C45—H45119.3
O1—C1A—H1A3109.5C47—C46—C45121.5 (6)
H1A1—C1A—H1A3109.5C47—C46—H46119.2
H1A2—C1A—H1A3109.5C45—C46—H46119.2
O2—C2—C22106.9 (5)C41—C47—C46116.9 (7)
O2—C2—C1108.2 (6)C41—C47—H47121.6
C22—C2—C1118.6 (5)C46—C47—H47121.6
O2—C2—H2107.6N41—C48—H48A109.5
C22—C2—H2107.6N41—C48—H48B109.5
C1—C2—H2107.6H48A—C48—H48B109.5
N21—C21—C27132.0 (6)N41—C48—H48C109.5
N21—C21—C23106.4 (6)H48A—C48—H48C109.5
C27—C21—C23121.4 (6)H48B—C48—H48C109.5
N21—C22—N23109.7 (5)O4—C4A—H4A1109.5
N21—C22—C2119.6 (6)O4—C4A—H4A2109.5
N23—C22—C2130.5 (6)H4A1—C4A—H4A2109.5
C24—C23—N23130.8 (6)O4—C4A—H4A3109.5
C24—C23—C21120.8 (6)H4A1—C4A—H4A3109.5
N23—C23—C21108.3 (5)H4A2—C4A—H4A3109.5
C23—C24—C25118.3 (6)
N43—Pd—O1—C1117.4 (4)C28—N21—C22—N23179.8 (6)
N13—Pd—O1—C132.3 (4)C21—N21—C22—C2175.0 (5)
N23—Pd—O1—C161.2 (4)C28—N21—C22—C24.1 (10)
N33—Pd—O1—C1150.3 (4)C23—N23—C22—N210.8 (6)
O4—Pd—O1—C181.6 (7)Pd—N23—C22—N21176.9 (4)
N43—Pd—O1—C1A62.0 (13)C23—N23—C22—C2174.2 (6)
N13—Pd—O1—C1A147.0 (13)Pd—N23—C22—C21.9 (9)
N23—Pd—O1—C1A119.4 (13)O2—C2—C22—N2158.0 (7)
N33—Pd—O1—C1A30.3 (13)C1—C2—C22—N21179.6 (6)
O4—Pd—O1—C1A97.8 (14)O2—C2—C22—N23116.6 (7)
N43—Pd—O4—C439.2 (4)C1—C2—C22—N235.8 (9)
N13—Pd—O4—C4124.1 (4)C22—N23—C23—C24175.0 (6)
N23—Pd—O4—C4142.0 (4)Pd—N23—C23—C241.6 (8)
N33—Pd—O4—C453.0 (4)C22—N23—C23—C210.6 (6)
O1—Pd—O4—C477.2 (8)Pd—N23—C23—C21177.2 (4)
N43—Pd—O4—C4A154.0 (11)N21—C21—C23—C24175.9 (5)
N13—Pd—O4—C4A69.1 (11)C27—C21—C23—C240.2 (10)
N23—Pd—O4—C4A24.8 (11)N21—C21—C23—N230.2 (7)
N33—Pd—O4—C4A113.8 (11)C27—C21—C23—N23175.8 (6)
O1—Pd—O4—C4A116.0 (12)N23—C23—C24—C25174.3 (6)
N43—Pd—N13—C12115.6 (5)C21—C23—C24—C250.7 (9)
N23—Pd—N13—C1267.1 (5)C23—C24—C25—C261.3 (10)
O4—Pd—N13—C12178.0 (4)C24—C25—C26—C271.4 (12)
O1—Pd—N13—C1210.3 (4)C25—C26—C27—C210.9 (12)
N43—Pd—N13—C1346.7 (5)N21—C21—C27—C26174.6 (7)
N23—Pd—N13—C13130.6 (5)C23—C21—C27—C260.3 (11)
O4—Pd—N13—C1319.6 (5)C3A—O3—C3—C32144.0 (7)
O1—Pd—N13—C13152.1 (5)C3A—O3—C3—C490.3 (8)
N13—Pd—N23—C2244.8 (5)C32—N31—C31—C330.3 (8)
N33—Pd—N23—C22132.2 (5)C38—N31—C31—C33179.0 (7)
O4—Pd—N23—C22148.1 (5)C32—N31—C31—C37175.4 (9)
O1—Pd—N23—C2225.0 (5)C38—N31—C31—C375.3 (13)
N13—Pd—N23—C23130.8 (4)C31—N31—C32—N331.9 (8)
N33—Pd—N23—C2352.2 (4)C38—N31—C32—N33177.3 (7)
O4—Pd—N23—C2327.5 (4)C31—N31—C32—C3170.5 (6)
O1—Pd—N23—C23159.4 (4)C38—N31—C32—C310.3 (11)
N43—Pd—N33—C3259.1 (5)C33—N33—C32—N312.8 (7)
N23—Pd—N33—C32118.2 (5)Pd—N33—C32—N31167.7 (4)
O4—Pd—N33—C327.8 (5)C33—N33—C32—C3168.8 (6)
O1—Pd—N33—C32163.7 (5)Pd—N33—C32—C320.8 (9)
N43—Pd—N33—C33131.5 (4)O3—C3—C32—N3159.8 (8)
N23—Pd—N33—C3351.1 (4)C4—C3—C32—N31179.0 (6)
O4—Pd—N33—C33161.5 (4)O3—C3—C32—N33111.0 (6)
O1—Pd—N33—C3327.0 (4)C4—C3—C32—N338.2 (9)
N13—Pd—N43—C42129.3 (5)N31—C31—C33—N331.4 (7)
N33—Pd—N43—C4253.8 (5)C37—C31—C33—N33177.7 (7)
O4—Pd—N43—C4225.5 (4)N31—C31—C33—C34175.1 (6)
O1—Pd—N43—C42161.3 (4)C37—C31—C33—C341.3 (11)
N13—Pd—N43—C4357.6 (5)C32—N33—C33—C312.6 (7)
N33—Pd—N43—C43119.2 (5)Pd—N33—C33—C31169.3 (4)
O4—Pd—N43—C43161.4 (5)C32—N33—C33—C34173.4 (6)
O1—Pd—N43—C4311.8 (5)Pd—N33—C33—C3414.8 (8)
C1A—O1—C1—C12135.8 (7)C31—C33—C34—C350.5 (9)
Pd—O1—C1—C1243.9 (5)N33—C33—C34—C35175.1 (6)
C1A—O1—C1—C2100.6 (8)C33—C34—C35—C362.5 (11)
Pd—O1—C1—C279.7 (4)C34—C35—C36—C372.8 (13)
C12—N11—C11—C130.4 (7)C35—C36—C37—C310.9 (13)
C18—N11—C11—C13175.9 (7)N31—C31—C37—C36174.1 (8)
C12—N11—C11—C17176.2 (6)C33—C31—C37—C361.0 (13)
C18—N11—C11—C177.4 (11)C4A—O4—C4—C42143.9 (7)
C13—N13—C12—N112.0 (7)Pd—O4—C4—C4243.1 (5)
Pd—N13—C12—N11168.0 (4)C4A—O4—C4—C391.9 (8)
C13—N13—C12—C1179.8 (5)Pd—O4—C4—C381.0 (5)
Pd—N13—C12—C114.3 (8)O3—C3—C4—O4178.8 (5)
C11—N11—C12—N131.5 (7)C32—C3—C4—O460.7 (7)
C18—N11—C12—N13174.7 (7)O3—C3—C4—C4257.3 (7)
C11—N11—C12—C1179.3 (5)C32—C3—C4—C4260.9 (8)
C18—N11—C12—C13.1 (11)C42—N41—C41—C47179.6 (7)
O1—C1—C12—N1350.4 (7)C48—N41—C41—C472.8 (11)
C2—C1—C12—N1373.7 (7)C42—N41—C41—C430.0 (7)
O1—C1—C12—N11132.1 (6)C48—N41—C41—C43177.6 (6)
C2—C1—C12—N11103.8 (7)C43—N43—C42—N411.0 (7)
C17—C11—C13—C146.0 (9)Pd—N43—C42—N41173.3 (4)
N11—C11—C13—C14177.1 (5)C43—N43—C42—C4176.5 (5)
C17—C11—C13—N13177.6 (6)Pd—N43—C42—C49.3 (8)
N11—C11—C13—N130.8 (6)C41—N41—C42—N430.6 (7)
C12—N13—C13—C111.7 (6)C48—N41—C42—N43176.9 (7)
Pd—N13—C13—C11166.2 (4)C41—N41—C42—C4176.8 (6)
C12—N13—C13—C14177.6 (6)C48—N41—C42—C45.8 (10)
Pd—N13—C13—C1417.9 (9)O4—C4—C42—N4336.2 (8)
C11—C13—C14—C153.0 (9)C3—C4—C42—N4387.6 (7)
N13—C13—C14—C15178.5 (6)O4—C4—C42—N41140.9 (6)
C13—C14—C15—C161.5 (10)C3—C4—C42—N4195.3 (8)
C14—C15—C16—C173.2 (11)C42—N43—C43—C44179.1 (6)
C15—C16—C17—C110.5 (10)Pd—N43—C43—C446.9 (9)
C13—C11—C17—C164.2 (10)C42—N43—C43—C410.9 (6)
N11—C11—C17—C16179.7 (6)Pd—N43—C43—C41173.1 (4)
C2A—O2—C2—C22141.1 (7)N41—C41—C43—N430.6 (6)
C2A—O2—C2—C190.2 (8)C47—C41—C43—N43179.8 (6)
O1—C1—C2—O2176.3 (4)N41—C41—C43—C44179.5 (5)
C12—C1—C2—O254.6 (6)C47—C41—C43—C440.1 (9)
O1—C1—C2—C2254.5 (7)N43—C43—C44—C45179.6 (6)
C12—C1—C2—C2267.2 (7)C41—C43—C44—C450.4 (9)
C22—N21—C21—C27174.7 (7)C43—C44—C45—C461.2 (10)
C28—N21—C21—C274.5 (11)C44—C45—C46—C471.9 (12)
C22—N21—C21—C230.3 (7)N41—C41—C47—C46178.8 (7)
C28—N21—C21—C23179.4 (6)C43—C41—C47—C460.8 (10)
C21—N21—C22—N230.7 (7)C45—C46—C47—C411.6 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C38—H38C···O30.962.603.012 (12)106
C34—H34···O10.932.463.342 (9)158
C14—H14···O40.932.513.387 (8)157

Experimental details

Crystal data
Chemical formula[Pd(C20H22N4O2)2]Cl2
Mr878.15
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)13.0985 (4), 10.7801 (4), 17.0783 (6)
β (°) 102.440 (3)
V3)2354.89 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.44 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Blessing 1995)
Tmin, Tmax0.779, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
16641, 7194, 6863
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.157, 1.00
No. of reflections7194
No. of parameters522
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.47
Absolute structureFlack (1983), with how many Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C38—H38C···O30.962.603.012 (12)106
C34—H34···O10.932.463.342 (9)158
C14—H14···O40.932.513.387 (8)157
Comparison of selected bond lengths (Å), bond angles (°) and torsion angles (°) for [Cu(L1)2]2+ and [Pd(L1)2]2+ cations. The torsion angles χ1, χ2, and χ3 correspond to (CH3)N—C—C—O(M), O(M)—C—C—O and O—C—C—N'(CH3), respectively, where O(M) is the O atom coordinated to the metal top
M = CuIIM = PdIIM = CuIIM = PdII
M—N432.028 (6)2.006 (5)M—N332.006 (6)2.058 (5)
M—N132.032 (5)2.011 (5)M—O42.520 (5)2.867 (4)
M—N231.973 (6)2.027 (5)M—O12.483 (4)2.871 (4)
N43—M—N1392.2 (2)90.4 (2)N23—M—O499.9 (2)110.57 (16)
N43—M—N23177.4 (3)177.27 (18)N33—M—O473.9 (2)79.37 (16)
N13—M—N2389.7 (2)89.2 (2)N43—M—O1106.24 (19)104.51 (16)
N43—M—N3390.3 (2)87.8 (2)N13—M—O181.39 (19)70.04 (16)
N13—M—N33177.4 (3)176.39 (18)N23—M—O172.4 (2)77.85 (16)
N23—M—N3389.8 (2)92.8 (2)N33—M—O198.4 (2)107.40 (15)
N43—M—O481.15 (19)66.92 (15)O4—N—O1169.55 (15)169.30 (15)
N13—M—O4106.05 (19)102.79 (16)
χ1(ligand 1)-145.2 (7)-140.9 (6)χ1(ligand 2)-134.9 (7)-132.1 (6)
χ2(ligand 1)-177.3 (7)-178.8 (5)χ2(ligand 2)-178.6 (5)-176.3 (4)
χ3(ligand 1)-62.1 (8)-59.8 (8)χ3(ligand 2)-56.0 (8)-58.0 (7)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds