Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An ab initio method is described for solving protein structures for which atomic resolution (better than 1.2 Å) data are available. The problem is divided into two stages. Firstly, a substructure composed of a small percentage (∼5%) of the scattering matter of the unit cell is positioned. This is used to generate a starting set of phases that are slightly better than random. Secondly, the full structure is developed from this phase set. The substructure can be a constellation of atoms that scatter anomalously, such as metal or S atoms. Alternatively, a structural fragment such as an idealized α-­helix or a motif from some distantly related protein can be orientated and sometimes positioned by an extensive molecular-replacement search, checking the correlation coefficient between observed and calculated structure factors for the highest normalized structure-factor amplitudes |E|. The top solutions are further ranked on the correlation coefficient for all E values. The phases generated from such fragments are improved using Patterson superposition maps and Sayre-equation refinement carried out with fast Fourier transforms. Phase refinement is completed using a novel density-modification process referred to as dynamic density modification (DDM). The method is illustrated by the solution of a number of known proteins. It has proved fast and very effective, able in these tests to solve proteins of up to 5000 atoms. The resulting electron-density maps show the major part of the structures at atomic resolution and can readily be interpreted by automated procedures.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds