Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The protozoan parasites Leishmania utilize a pteridine-reducing enzyme, pteridine reductase (PTR1), to bypass antifolate inhibition. The crystal structure of PTR1 from L. tarentolae has been solved as a binary complex with NADPH at 2.8 Å resolution. The structure was solved by molecular-replacement techniques using the recently reported L. major PTR1 structure as a search model. Comparisons of the present structure with the L. major PTR1 allowed us to identify regions of flexibility in the molecule. PTR1 is a member of the growing family of short-chain dehydrogenases (SDR) which share the characteristic Tyr(Xaa)3Lys motif in the vicinity of the active site. The functional enzyme is a tetramer and the crystallographic asymmetric unit contains a tetramer with 222 point-group symmetry.

Supporting information

PDB reference: L. tarentolae PTR1, 1p33, r1p33sf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds