Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, {[Zn(C8H4O5)(C10H8N2)]·H2O}n, was synthesized by reacting Zn(NO3)2, 5-hydroxy­isophthalic acid and 2,2′-bipyridine under hydro­thermal conditions. Self-assembly between the bridging ligands, chelating ligands and metal ions results in a one-dimensional coordination polymer, in which the ZnII atom is six-coordinate and shows a [ZnN2O4] octa­hedral geometry. The ribbons are inter­connected by an extensive network of hydrogen bonds involving the water mol­ecule, the hydroxyl group and the carboxyl­ate O atoms, forming a two-dimensional layer. These layers are connected through π–π inter­actions between the pyridyl rings [centroid-to-centroid distance 3.57 (1) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059880/hy2097sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059880/hy2097Isup2.hkl
Contains datablock I

CCDC reference: 672730

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.111
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Zn1 - O2 .. 12.44 su
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT128_ALERT_4_C Non-standard setting of Space-group P2/c .... P2/n PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.51 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn1 - O1 .. 9.45 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn1 - O3_b .. 5.62 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The design and construction of coordination polymers has attracted much attention owing to their intriguing topologies and potential applications as functional materials (Inoue et al., 2001). Many networks with various structural motifs have been documented in the past decade (Amabilino & Stoddart, 1995). Unlike pyridine-2,4-, 3,4- 2,5- and 2,6-dicarboxylic acids, which have been widely used as bridging ligands to assemble various coordination polymers, 5-hydroxyisophthalic acid (H2hip) as a member of the multicarboxylate ligands has been rarely reported (Plater et al., 2001). We report here the synthesis and structure of a zinc(II) coordination polymer constructed from 5-hydroxyisophthalic acid and 2,2'-bipyridine (bpy).

In the title compound, the asymmetric unit contains one ZnII atom, one hip ligand, one bpy ligand and one lattice water molecule. Each ZnII atom is coordinated by four O atoms from three hip ligands (Table 1) and two N atoms from a chelating bpy ligand in a distorted octahedral geometry (Fig. 1). Each pair of adjacent ZnII atoms are bridged by two hip ligands to form a binuclear Zn subunit. The adjacent binuclear subunits are further interconnected by two hip ligands to form a one-dimensional ribbon running along the a + c direction (Fig. 2). These ribbons are decorated with bpy ligands alternately at two sides.

The ribbons are interconnected by an extensive network of hydrogen bonds involving water molecule, hydroxyl group and carboxylate O atoms (Table 2), forming a two-dimensional layer. The layers are connected through ππ interactions between the pyridyl rings with a centroid-to-centroid distance of 3.57 (1) Å.

Related literature top

For related literature, see: Amabilino & Stoddart (1995); Inoue et al. (2001); Plater et al. (2001).

Experimental top

A mixture of Zn(NO3)2.2H2O (0.120 g, 0.5 mmol), 5-hydroxyisophthalic acid (0.091 g, 0.5 mmol), 2,2'-bipyridine (0.078 g, 0.5 mmol), NaOH (0.04 g, 1 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined reactor, which was heated at 453 K for 6 d and then cooled to room temperature at a rate of 5 K h-1 (yield 58%). Analysis calculated for C18H14N2O6Zn: C 51.51, H 3.36, N 6.67%; found: C 51.68, H 3.64, N 6.73%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in a difference Fourier map and refined with a distance restrain of O—H = 0.85 (1) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound with symmetric equivalent atoms to complete the Zn coordination. Displacement ellipsoids are drawn at the 30% probability level. Lattice water molecule has been omitted. [Symmetry codes: (i) x + 1/2, -y + 2, z + 1/2; (ii) -x, -y + 2, -z.]
[Figure 2] Fig. 2. A view of the one-dimensional ribbon structure. H atoms and lattice water molecule have been omitted for clarity.
catena-Poly[[(2,2'-bipyridyl-κ2N,N')zinc(II)]-µ3– (5-hydroxyisophthalato-κ4O,O':O'':O''') monohydrate] top
Crystal data top
[Zn(C8H4O5)(C10H8N2)]·H2OF(000) = 856
Mr = 419.68Dx = 1.656 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 3685 reflections
a = 8.777 (2) Åθ = 2.5–22.4°
b = 10.9763 (16) ŵ = 1.50 mm1
c = 17.981 (3) ÅT = 293 K
β = 103.650 (14)°Block, colourless
V = 1683.4 (5) Å30.37 × 0.32 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3880 independent reflections
Radiation source: fine-focus sealed tube2902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 111
Tmin = 0.608, Tmax = 0.720k = 114
5111 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
3880 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Zn(C8H4O5)(C10H8N2)]·H2OV = 1683.4 (5) Å3
Mr = 419.68Z = 4
Monoclinic, P2/nMo Kα radiation
a = 8.777 (2) ŵ = 1.50 mm1
b = 10.9763 (16) ÅT = 293 K
c = 17.981 (3) Å0.37 × 0.32 × 0.23 mm
β = 103.650 (14)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2902 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.720Rint = 0.027
5111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.43 e Å3
3880 reflectionsΔρmin = 0.72 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.04335 (4)0.79387 (3)0.171663 (16)0.02547 (12)
C10.1934 (4)0.8493 (3)0.06332 (15)0.0333 (7)
C20.3194 (3)0.8800 (3)0.00631 (14)0.0266 (6)
C30.2932 (3)0.9639 (3)0.06037 (14)0.0265 (6)
H3A0.19741.00410.05290.032*
C40.4116 (3)0.9871 (2)0.12579 (14)0.0252 (6)
C50.5553 (3)0.9282 (3)0.13638 (15)0.0294 (6)
H5A0.63390.94370.18000.035*
C60.5818 (3)0.8457 (3)0.08168 (16)0.0290 (6)
C70.4635 (4)0.8226 (3)0.01715 (15)0.0297 (6)
H7A0.48110.76780.01940.036*
C80.3810 (3)1.0759 (3)0.18412 (14)0.0260 (6)
C90.0538 (4)0.6455 (3)0.29853 (17)0.0422 (8)
H9A0.07230.72140.31760.051*
C100.0911 (5)0.5421 (4)0.33393 (19)0.0558 (10)
H10A0.13450.54840.37620.067*
C110.0640 (5)0.4309 (4)0.3066 (2)0.0634 (12)
H11A0.08770.36040.33030.076*
C120.0003 (5)0.4235 (3)0.2430 (2)0.0509 (9)
H12A0.01870.34820.22320.061*
C130.1464 (4)0.4292 (3)0.1073 (2)0.0473 (8)
H13A0.13910.35240.12800.057*
C140.2047 (4)0.4431 (4)0.0426 (2)0.0546 (10)
H14A0.23530.37510.01880.066*
C150.2171 (4)0.5564 (4)0.0140 (2)0.0510 (9)
H15A0.25720.56700.02900.061*
C160.1694 (4)0.6549 (3)0.04976 (17)0.0393 (7)
H16A0.17820.73250.03030.047*
C170.0992 (3)0.5322 (3)0.14052 (17)0.0320 (6)
C180.0340 (4)0.5299 (3)0.20978 (17)0.0333 (7)
N10.0082 (3)0.6396 (2)0.23741 (13)0.0313 (5)
N20.1105 (3)0.6432 (2)0.11174 (13)0.0297 (5)
O10.0610 (3)0.9002 (2)0.07345 (12)0.0420 (5)
O20.2190 (3)0.7718 (2)0.10882 (12)0.0491 (6)
O30.2652 (2)1.1432 (2)0.16680 (11)0.0359 (5)
O40.4802 (2)1.07902 (19)0.24867 (10)0.0329 (5)
O50.7167 (3)0.7825 (2)0.08941 (13)0.0432 (6)
H5B0.79050.82420.11230.065*
O1W0.9935 (4)0.1276 (2)0.15885 (16)0.0578 (7)
H1WA1.003 (6)0.086 (3)0.1992 (13)0.087*
H1WB1.014 (6)0.085 (3)0.1235 (15)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03291 (19)0.02413 (18)0.01813 (16)0.00019 (14)0.00356 (12)0.00048 (12)
C10.0404 (17)0.0369 (16)0.0210 (12)0.0125 (14)0.0042 (12)0.0026 (12)
C20.0306 (14)0.0297 (14)0.0193 (11)0.0034 (12)0.0058 (10)0.0008 (11)
C30.0263 (13)0.0314 (14)0.0206 (11)0.0006 (12)0.0027 (10)0.0018 (11)
C40.0296 (14)0.0262 (13)0.0195 (11)0.0015 (12)0.0053 (10)0.0002 (10)
C50.0307 (14)0.0337 (15)0.0216 (12)0.0005 (13)0.0018 (11)0.0021 (11)
C60.0276 (14)0.0304 (15)0.0292 (13)0.0018 (12)0.0071 (11)0.0015 (12)
C70.0371 (16)0.0284 (14)0.0246 (12)0.0024 (13)0.0090 (12)0.0044 (11)
C80.0298 (14)0.0274 (14)0.0209 (12)0.0011 (12)0.0066 (11)0.0001 (10)
C90.0488 (19)0.050 (2)0.0289 (14)0.0088 (17)0.0105 (14)0.0011 (14)
C100.064 (2)0.071 (3)0.0339 (17)0.015 (2)0.0151 (17)0.0118 (18)
C110.077 (3)0.054 (2)0.060 (2)0.018 (2)0.019 (2)0.023 (2)
C120.060 (2)0.0345 (18)0.056 (2)0.0060 (17)0.0090 (18)0.0107 (16)
C130.054 (2)0.0302 (16)0.055 (2)0.0049 (16)0.0071 (17)0.0062 (15)
C140.053 (2)0.052 (2)0.061 (2)0.0072 (19)0.0178 (19)0.0225 (19)
C150.051 (2)0.063 (2)0.0433 (19)0.0040 (19)0.0198 (17)0.0173 (18)
C160.0465 (19)0.0411 (18)0.0344 (15)0.0047 (16)0.0175 (14)0.0064 (14)
C170.0290 (15)0.0302 (15)0.0338 (15)0.0015 (13)0.0014 (12)0.0023 (12)
C180.0325 (15)0.0300 (15)0.0336 (15)0.0038 (13)0.0002 (12)0.0010 (12)
N10.0349 (13)0.0339 (13)0.0235 (11)0.0032 (11)0.0038 (10)0.0042 (10)
N20.0314 (13)0.0285 (12)0.0296 (12)0.0034 (11)0.0083 (10)0.0056 (10)
O10.0365 (12)0.0500 (14)0.0333 (11)0.0009 (11)0.0044 (9)0.0020 (10)
O20.0505 (15)0.0616 (16)0.0317 (11)0.0056 (13)0.0029 (10)0.0201 (11)
O30.0363 (11)0.0440 (12)0.0266 (10)0.0162 (10)0.0062 (9)0.0010 (9)
O40.0380 (11)0.0356 (11)0.0211 (9)0.0060 (9)0.0009 (8)0.0071 (8)
O50.0322 (12)0.0487 (14)0.0468 (13)0.0086 (11)0.0057 (10)0.0143 (11)
O1W0.0690 (18)0.0398 (14)0.0631 (17)0.0135 (14)0.0125 (15)0.0079 (13)
Geometric parameters (Å, º) top
Zn1—O4i2.0449 (19)C9—H9A0.9300
Zn1—O3ii2.087 (2)C10—C111.357 (6)
Zn1—N12.129 (2)C10—H10A0.9300
Zn1—N22.131 (2)C11—C121.390 (6)
Zn1—O12.135 (2)C11—H11A0.9300
Zn1—O22.326 (3)C12—C181.377 (4)
C1—O21.237 (4)C12—H12A0.9300
C1—O11.263 (4)C13—C171.387 (4)
C1—C21.500 (4)C13—C141.386 (5)
C2—C71.385 (4)C13—H13A0.9300
C2—C31.397 (4)C14—C151.360 (6)
C3—C41.397 (4)C14—H14A0.9300
C3—H3A0.9300C15—C161.373 (5)
C4—C51.390 (4)C15—H15A0.9300
C4—C81.502 (4)C16—N21.341 (4)
C5—C61.396 (4)C16—H16A0.9300
C5—H5A0.9300C17—N21.337 (4)
C6—O51.351 (4)C17—C181.489 (4)
C6—C71.386 (4)C18—N11.342 (4)
C7—H7A0.9300O3—Zn1ii2.087 (2)
C8—O31.235 (3)O4—Zn1iii2.0449 (19)
C8—O41.277 (3)O5—H5B0.8200
C9—N11.338 (4)O1W—H1WA0.85 (3)
C9—C101.378 (5)O1W—H1WB0.85 (3)
O4i—Zn1—O3ii93.05 (8)O3—C8—O4123.9 (3)
O4i—Zn1—N195.83 (9)O3—C8—C4118.9 (2)
O3ii—Zn1—N1123.06 (9)O4—C8—C4117.2 (2)
O4i—Zn1—N2165.77 (8)N1—C9—C10121.7 (3)
O3ii—Zn1—N282.17 (9)N1—C9—H9A119.1
N1—Zn1—N275.95 (10)C10—C9—H9A119.1
O4i—Zn1—O196.42 (9)C11—C10—C9119.5 (3)
O3ii—Zn1—O190.39 (9)C11—C10—H10A120.2
N1—Zn1—O1143.52 (9)C9—C10—H10A120.2
N2—Zn1—O197.00 (9)C10—C11—C12119.3 (3)
O4i—Zn1—O299.15 (9)C10—C11—H11A120.4
O3ii—Zn1—O2147.19 (8)C12—C11—H11A120.4
N1—Zn1—O286.00 (9)C18—C12—C11118.6 (4)
N2—Zn1—O291.94 (9)C18—C12—H12A120.7
O1—Zn1—O258.17 (8)C11—C12—H12A120.7
O4i—Zn1—C199.93 (9)C17—C13—C14118.6 (3)
O3ii—Zn1—C1119.10 (9)C17—C13—H13A120.7
N1—Zn1—C1114.40 (10)C14—C13—H13A120.7
N2—Zn1—C194.09 (9)C15—C14—C13119.7 (3)
O1—Zn1—C129.40 (9)C15—C14—H14A120.1
O2—Zn1—C128.80 (9)C13—C14—H14A120.1
O2—C1—O1120.9 (3)C14—C15—C16118.9 (3)
O2—C1—C2119.5 (3)C14—C15—H15A120.5
O1—C1—C2119.6 (3)C16—C15—H15A120.5
O2—C1—Zn164.87 (17)N2—C16—C15122.2 (3)
O1—C1—Zn156.11 (15)N2—C16—H16A118.9
C2—C1—Zn1173.3 (2)C15—C16—H16A118.9
C7—C2—C3119.8 (2)N2—C17—C13121.3 (3)
C7—C2—C1119.0 (3)N2—C17—C18114.7 (3)
C3—C2—C1121.2 (3)C13—C17—C18124.0 (3)
C4—C3—C2119.6 (3)N1—C18—C12121.8 (3)
C4—C3—H3A120.2N1—C18—C17115.2 (3)
C2—C3—H3A120.2C12—C18—C17123.0 (3)
C5—C4—C3120.1 (2)C9—N1—C18119.0 (3)
C5—C4—C8120.8 (2)C9—N1—Zn1123.9 (2)
C3—C4—C8119.1 (2)C18—N1—Zn1116.67 (19)
C4—C5—C6120.1 (2)C17—N2—C16119.2 (3)
C4—C5—H5A119.9C17—N2—Zn1117.20 (19)
C6—C5—H5A119.9C16—N2—Zn1123.5 (2)
O5—C6—C7117.2 (3)C1—O1—Zn194.49 (18)
O5—C6—C5123.3 (3)C1—O2—Zn186.3 (2)
C7—C6—C5119.5 (3)C8—O3—Zn1ii155.2 (2)
C2—C7—C6120.9 (3)C8—O4—Zn1iii119.67 (18)
C2—C7—H7A119.5C6—O5—H5B109.5
C6—C7—H7A119.5H1WA—O1W—H1WB111 (3)
O4i—Zn1—C1—O290.96 (19)C17—C18—N1—Zn15.8 (3)
O3ii—Zn1—C1—O2169.88 (17)O4i—Zn1—N1—C916.1 (3)
N1—Zn1—C1—O210.2 (2)O3ii—Zn1—N1—C9113.6 (2)
N2—Zn1—C1—O286.58 (19)N2—Zn1—N1—C9175.7 (3)
O1—Zn1—C1—O2176.4 (3)O1—Zn1—N1—C993.0 (3)
O4i—Zn1—C1—O185.45 (18)O2—Zn1—N1—C982.7 (3)
O3ii—Zn1—C1—O113.7 (2)C1—Zn1—N1—C987.6 (3)
N1—Zn1—C1—O1173.44 (17)O4i—Zn1—N1—C18171.7 (2)
N2—Zn1—C1—O197.02 (18)O3ii—Zn1—N1—C1874.2 (2)
O2—Zn1—C1—O1176.4 (3)N2—Zn1—N1—C183.5 (2)
O2—C1—C2—C71.5 (4)O1—Zn1—N1—C1879.2 (3)
O1—C1—C2—C7179.3 (3)O2—Zn1—N1—C1889.5 (2)
O2—C1—C2—C3177.8 (3)C1—Zn1—N1—C1884.6 (2)
O1—C1—C2—C30.1 (4)C13—C17—N2—C160.4 (4)
C7—C2—C3—C41.4 (4)C18—C17—N2—C16179.3 (3)
C1—C2—C3—C4177.8 (2)C13—C17—N2—Zn1177.3 (2)
C2—C3—C4—C50.9 (4)C18—C17—N2—Zn12.4 (3)
C2—C3—C4—C8179.0 (2)C15—C16—N2—C170.8 (5)
C3—C4—C5—C60.0 (4)C15—C16—N2—Zn1177.5 (3)
C8—C4—C5—C6179.9 (3)O4i—Zn1—N2—C1756.3 (5)
C4—C5—C6—O5177.8 (3)O3ii—Zn1—N2—C17127.4 (2)
C4—C5—C6—C70.4 (4)N1—Zn1—N2—C170.4 (2)
C3—C2—C7—C61.0 (4)O1—Zn1—N2—C17143.2 (2)
C1—C2—C7—C6178.3 (3)O2—Zn1—N2—C1785.0 (2)
O5—C6—C7—C2177.5 (3)C1—Zn1—N2—C17113.8 (2)
C5—C6—C7—C20.1 (4)O4i—Zn1—N2—C16120.5 (4)
C5—C4—C8—O3166.5 (3)O3ii—Zn1—N2—C1649.4 (2)
C3—C4—C8—O313.6 (4)N1—Zn1—N2—C16176.4 (3)
C5—C4—C8—O411.8 (4)O1—Zn1—N2—C1640.1 (3)
C3—C4—C8—O4168.1 (3)O2—Zn1—N2—C1698.2 (2)
N1—C9—C10—C110.3 (6)C1—Zn1—N2—C1669.5 (3)
C9—C10—C11—C120.6 (6)O2—C1—O1—Zn13.8 (3)
C10—C11—C12—C180.3 (6)C2—C1—O1—Zn1174.0 (2)
C17—C13—C14—C151.2 (6)O4i—Zn1—O1—C198.84 (18)
C13—C14—C15—C160.8 (6)O3ii—Zn1—O1—C1168.04 (18)
C14—C15—C16—N20.2 (6)N1—Zn1—O1—C110.1 (3)
C14—C13—C17—N20.6 (5)N2—Zn1—O1—C185.89 (18)
C14—C13—C17—C18179.7 (3)O2—Zn1—O1—C12.04 (17)
C11—C12—C18—N10.3 (5)O1—C1—O2—Zn13.5 (3)
C11—C12—C18—C17178.7 (3)C2—C1—O2—Zn1174.3 (2)
N2—C17—C18—N15.4 (4)O4i—Zn1—O2—C193.99 (18)
C13—C17—C18—N1174.3 (3)O3ii—Zn1—O2—C116.5 (3)
N2—C17—C18—C12173.6 (3)N1—Zn1—O2—C1170.74 (19)
C13—C17—C18—C126.7 (5)N2—Zn1—O2—C194.97 (19)
C10—C9—N1—C180.3 (5)O1—Zn1—O2—C12.08 (17)
C10—C9—N1—Zn1172.4 (3)O4—C8—O3—Zn1ii71.6 (6)
C12—C18—N1—C90.6 (5)C4—C8—O3—Zn1ii110.2 (4)
C17—C18—N1—C9178.4 (3)O3—C8—O4—Zn1iii2.8 (4)
C12—C18—N1—Zn1173.2 (3)C4—C8—O4—Zn1iii175.39 (17)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x, y+2, z; (iii) x1/2, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1Wiv0.821.862.646 (4)161
O1W—H1WA···O4v0.85 (3)2.02 (2)2.790 (3)150 (4)
O1W—H1WB···O1vi0.85 (3)2.25 (3)2.910 (4)135 (4)
Symmetry codes: (iv) x, y+1, z; (v) x+3/2, y+1, z+1/2; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O5)(C10H8N2)]·H2O
Mr419.68
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)8.777 (2), 10.9763 (16), 17.981 (3)
β (°) 103.650 (14)
V3)1683.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.37 × 0.32 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.608, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
5111, 3880, 2902
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.02
No. of reflections3880
No. of parameters250
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.72

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Zn1—O4i2.0449 (19)Zn1—N22.131 (2)
Zn1—O3ii2.087 (2)Zn1—O12.135 (2)
Zn1—N12.129 (2)Zn1—O22.326 (3)
O4i—Zn1—O3ii93.05 (8)N1—Zn1—O1143.52 (9)
O4i—Zn1—N195.83 (9)N2—Zn1—O197.00 (9)
O3ii—Zn1—N1123.06 (9)O4i—Zn1—O299.15 (9)
O4i—Zn1—N2165.77 (8)O3ii—Zn1—O2147.19 (8)
O3ii—Zn1—N282.17 (9)N1—Zn1—O286.00 (9)
N1—Zn1—N275.95 (10)N2—Zn1—O291.94 (9)
O4i—Zn1—O196.42 (9)O1—Zn1—O258.17 (8)
O3ii—Zn1—O190.39 (9)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1Wiii0.821.862.646 (4)160.9
O1W—H1WA···O4iv0.85 (3)2.02 (2)2.790 (3)150 (4)
O1W—H1WB···O1v0.85 (3)2.25 (3)2.910 (4)135 (4)
Symmetry codes: (iii) x, y+1, z; (iv) x+3/2, y+1, z+1/2; (v) x+1, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds