Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Co(C7H4O5S)(C10H8N2)(H2O)3], the CoII atom has a distorted octa­hedral geometry formed by three aqua O atoms, one carboxyl­ate O atom from a 2-sulfonatobenzoate dianion and two N atoms of a 2,2′-bipyridine ligand. Inter­molecular O—H...O hydrogen bonds link the mononuclear units into a two-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041188/is6152sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041188/is6152Isup2.hkl
Contains datablock I

CCDC reference: 296584

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.023
  • wR factor = 0.057
  • Data-to-parameter ratio = 9.9

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.98 From the CIF: _reflns_number_total 2602 Count of symmetry unique reflns 1897 Completeness (_total/calc) 137.16% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 705 Fraction of Friedel pairs measured 0.372 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Like other sulfobenzoic acids, such as 4-sulfobenzoic acid (Zhang et al., 2005) and 5-sulfoisophthalic acid (Li et al., 2005; Xiao & Morsali, 2005; Yuan et al., 2004), which show diverse coordination modes, 2-sulfobenzoic acid (o-H2sb) is also a versatile ligand and can function variously as a monodentate, bidentate or tridentate ligand; it can also bridge or chelate (Li & Yang, 2004; Su et al., 2005; Xiao et al., 2005). Here, we represent the title compound [Co(2,2'-bipy)(o-sb)(H2O)3] (2,2'-bipy is 2,2'-bipyridine), (I), in which the o-sb2− dianion functions in a monodentate coordination mode.

In (I), the CoII atom is in a distorted octahedral environment formed by three aqua O atoms, one carboxylate O atom from an o-sb2− dianion and two N atoms of a 2,2'-bipyridine ligand (Fig. 1 and Table 1). The o-sb2− ligand coordinates to the CoII centre in a monodentate mode, which is the same as observed in the previously reported compound [Mn(phen)2(o-sb)(H2O)]·3H2O (phen is 1,10-phenanthroline; Xiao, 2005). The dihedral angle between the planes of the o-sb2− ring and its carboxylate group is 59.7 (1)°, which is comparable with that in [Mn(phen)2(o-sb)(H2O)]·3H2O and much larger than that in [Ni(o-sb)(bpe)(H2O)2]·0.25H2O (Xiao et al., 2005). The dihedral angle between the o-sb2− ring and the mean plane of the 2,2'-bipyridine rings is 50.6 (2)°.

The stability of the crystal structure of (I) is enhanced significantly by hydrogen-bonding interactions (Table 2). There are three intramolecular hydrogen bonds between the coordinated water molecule and the uncoordinated carboxylate O atom (O8—H8B···O2), and between the coordinated water molecule and the uncoordinated sulfonate group (O7—H7A···O3 and O6—H6A···O4). Additional O6—H6B···O2, O8—H8A···O3 and O7—H7B···O5 intermolecular hydrogen bonds link neighbouring mononuclear units into a two-dimensional network structure (Fig. 2).

Experimental top

An aqueous solution (10 ml) of CoCl2·6H2O (0.20 mmol, 0.047 g) was added slowly to a solution (10 ml) of N,N-dimethylformamide containing 2,2'-bipyridine (0.20 mmol, 0.031 g) and 2-sulfobenzoic acid (0.20 mmol, 0.037 g). Red crystals of (I) suitable for X-ray diffraction analysis were obtained on allowing the solution to stand at room temperature for about two months.

Refinement top

Water H atoms were located in a difference map and refined with distance restraints O—H = 0.82 (1) Å and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment of the CoII atom in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the two-dimensional network structure formed by hydrogen bonding interactions (shown as dashed lines). For clarity, the 2,2'-bipyridine ligands have been omitted.
Triaqua(2,2'-bipyridine)(2-sulfonatobenzoato)cobalt(II) top
Crystal data top
[Co(C7H4O5S)(C10H8N2)(H2O)3]F(000) = 482
Mr = 469.32Dx = 1.610 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 1079 reflections
a = 7.4546 (7) Åθ = 2.5–25.2°
b = 12.3272 (11) ŵ = 1.04 mm1
c = 10.5333 (9) ÅT = 298 K
β = 90.142 (11)°Block, red
V = 967.95 (15) Å30.32 × 0.25 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2602 independent reflections
Radiation source: fine-focus sealed tube2565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 89
Tmin = 0.731, Tmax = 0.843k = 1515
5336 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.0468P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2602 reflectionsΔρmax = 0.21 e Å3
262 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1897 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (10)
Crystal data top
[Co(C7H4O5S)(C10H8N2)(H2O)3]V = 967.95 (15) Å3
Mr = 469.32Z = 2
Monoclinic, PcMo Kα radiation
a = 7.4546 (7) ŵ = 1.04 mm1
b = 12.3272 (11) ÅT = 298 K
c = 10.5333 (9) Å0.32 × 0.25 × 0.17 mm
β = 90.142 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2565 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.843Rint = 0.021
5336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.24 e Å3
2602 reflectionsAbsolute structure: Flack (1983), with 1897 Friedel pairs
262 parametersAbsolute structure parameter: 0.015 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75555 (3)0.81413 (2)0.06926 (3)0.02901 (9)
S10.64956 (9)0.81690 (5)0.48475 (6)0.03447 (16)
O10.5925 (2)0.73049 (14)0.19754 (18)0.0325 (4)
O20.3141 (2)0.79215 (16)0.1713 (2)0.0439 (5)
O30.5840 (3)0.90778 (14)0.40835 (18)0.0408 (5)
O40.8146 (3)0.77107 (16)0.4378 (2)0.0451 (5)
O50.6566 (4)0.84418 (17)0.6185 (2)0.0542 (6)
O60.9540 (2)0.74925 (15)0.18803 (18)0.0395 (4)
H6A0.92410.75670.26250.059*
H6B1.06090.76480.18950.059*
O70.7481 (3)0.95047 (14)0.18624 (19)0.0438 (5)
H7A0.71200.94230.25910.066*
H7B0.72131.01300.16780.066*
O80.5243 (3)0.86858 (15)0.02745 (19)0.0432 (5)
H8A0.52050.93200.05040.065*
H8B0.44220.84080.01270.065*
N10.9399 (3)0.88320 (16)0.0602 (2)0.0330 (5)
N20.7909 (3)0.68890 (15)0.0661 (2)0.0339 (5)
C11.0184 (4)0.9796 (2)0.0480 (3)0.0414 (6)
H10.98441.02360.01950.050*
C21.1471 (4)1.0173 (2)0.1300 (3)0.0472 (7)
H21.19871.08530.11850.057*
C31.1972 (5)0.9526 (2)0.2289 (4)0.0531 (7)
H31.28520.97580.28530.064*
C41.1176 (4)0.8534 (3)0.2446 (3)0.0481 (7)
H41.14980.80880.31210.058*
C50.9878 (4)0.82048 (19)0.1581 (3)0.0338 (6)
C60.8982 (4)0.7123 (2)0.1650 (3)0.0348 (6)
C70.9237 (4)0.6398 (2)0.2631 (3)0.0463 (7)
H70.99350.65880.33280.056*
C80.8447 (5)0.5390 (3)0.2566 (3)0.0543 (8)
H80.86380.48830.32050.065*
C90.7380 (5)0.5142 (2)0.1553 (3)0.0527 (8)
H90.68420.44640.14900.063*
C100.7115 (4)0.5914 (2)0.0626 (3)0.0456 (7)
H100.63560.57530.00490.055*
C110.4336 (3)0.74470 (19)0.2331 (2)0.0298 (5)
C120.3883 (3)0.69362 (17)0.3601 (3)0.0295 (5)
C130.4818 (3)0.71406 (19)0.4726 (3)0.0311 (5)
C140.4466 (4)0.6548 (2)0.5817 (3)0.0441 (7)
H140.50700.67050.65680.053*
C150.3208 (4)0.5720 (3)0.5783 (3)0.0542 (8)
H150.30180.52950.64990.065*
C160.2240 (4)0.5524 (2)0.4694 (3)0.0511 (8)
H160.13770.49790.46830.061*
C170.2547 (4)0.6135 (2)0.3619 (3)0.0376 (6)
H170.18580.60150.28960.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02392 (16)0.03124 (16)0.03187 (18)0.00049 (14)0.00387 (12)0.00286 (16)
S10.0420 (4)0.0302 (3)0.0312 (4)0.0030 (3)0.0010 (3)0.0011 (3)
O10.0233 (9)0.0372 (9)0.0370 (10)0.0008 (7)0.0073 (7)0.0057 (8)
O20.0233 (10)0.0626 (12)0.0458 (12)0.0052 (9)0.0035 (8)0.0154 (10)
O30.0539 (13)0.0290 (8)0.0394 (11)0.0014 (8)0.0037 (9)0.0001 (8)
O40.0348 (11)0.0483 (10)0.0522 (12)0.0018 (9)0.0030 (9)0.0038 (10)
O50.0810 (17)0.0447 (10)0.0368 (12)0.0108 (11)0.0035 (11)0.0051 (10)
O60.0239 (9)0.0530 (11)0.0417 (11)0.0022 (8)0.0007 (7)0.0091 (9)
O70.0606 (13)0.0328 (9)0.0380 (11)0.0009 (9)0.0081 (9)0.0027 (8)
O80.0344 (10)0.0496 (11)0.0457 (12)0.0040 (9)0.0008 (8)0.0121 (9)
N10.0285 (11)0.0326 (10)0.0378 (12)0.0026 (8)0.0016 (9)0.0055 (9)
N20.0313 (12)0.0314 (11)0.0389 (13)0.0027 (9)0.0003 (10)0.0034 (9)
C10.0402 (16)0.0341 (13)0.0499 (17)0.0039 (12)0.0027 (13)0.0044 (12)
C20.0360 (15)0.0421 (15)0.0636 (19)0.0106 (12)0.0026 (14)0.0164 (15)
C30.0386 (15)0.0601 (16)0.0606 (18)0.0075 (16)0.0109 (13)0.0188 (18)
C40.0434 (16)0.0515 (16)0.0494 (18)0.0011 (14)0.0159 (13)0.0084 (14)
C50.0298 (14)0.0370 (13)0.0346 (14)0.0009 (10)0.0032 (11)0.0054 (11)
C60.0321 (14)0.0354 (12)0.0370 (15)0.0008 (11)0.0006 (11)0.0046 (11)
C70.0509 (19)0.0456 (15)0.0422 (16)0.0018 (14)0.0088 (13)0.0004 (13)
C80.057 (2)0.0491 (17)0.056 (2)0.0025 (15)0.0057 (16)0.0159 (15)
C90.0540 (19)0.0417 (16)0.062 (2)0.0129 (14)0.0073 (17)0.0023 (16)
C100.0453 (17)0.0395 (14)0.0518 (18)0.0117 (12)0.0012 (13)0.0097 (13)
C110.0262 (13)0.0289 (11)0.0344 (14)0.0014 (10)0.0023 (10)0.0034 (10)
C120.0233 (13)0.0257 (11)0.0396 (15)0.0057 (9)0.0084 (10)0.0014 (10)
C130.0302 (13)0.0281 (11)0.0350 (14)0.0041 (10)0.0097 (10)0.0019 (10)
C140.0454 (17)0.0485 (15)0.0384 (16)0.0035 (13)0.0076 (12)0.0059 (13)
C150.0558 (19)0.0539 (18)0.053 (2)0.0030 (15)0.0173 (16)0.0232 (15)
C160.0414 (17)0.0427 (15)0.069 (2)0.0089 (13)0.0157 (15)0.0083 (15)
C170.0305 (14)0.0342 (13)0.0482 (17)0.0014 (11)0.0095 (11)0.0014 (12)
Geometric parameters (Å, º) top
Co1—O72.085 (2)C2—H20.9300
Co1—O12.092 (2)C3—C41.370 (5)
Co1—O62.094 (2)C3—H30.9300
Co1—O82.112 (2)C4—C51.390 (4)
Co1—N12.115 (2)C4—H40.9300
Co1—N22.118 (2)C5—C61.494 (4)
S1—O41.441 (2)C6—C71.379 (4)
S1—O51.450 (2)C7—C81.377 (4)
S1—O31.4634 (18)C7—H70.9300
S1—C131.785 (3)C8—C91.365 (5)
O1—C111.255 (3)C8—H80.9300
O2—C111.249 (3)C9—C101.378 (4)
O6—H6A0.8202C9—H90.9300
O6—H6B0.8199C10—H100.9300
O7—H7A0.8198C11—C121.517 (4)
O7—H7B0.8195C12—C131.397 (4)
O8—H8A0.8194C12—C171.403 (4)
O8—H8B0.8196C13—C141.387 (4)
N1—C11.331 (3)C14—C151.387 (5)
N1—C51.338 (4)C14—H140.9300
N2—C101.340 (3)C15—C161.377 (5)
N2—C61.345 (4)C15—H150.9300
C1—C21.372 (4)C16—C171.379 (4)
C1—H10.9300C16—H160.9300
C2—C31.364 (5)C17—H170.9300
O7—Co1—O190.00 (8)C2—C3—H3120.1
O7—Co1—O688.49 (8)C4—C3—H3120.1
O1—Co1—O680.58 (7)C3—C4—C5118.9 (3)
O7—Co1—O890.41 (8)C3—C4—H4120.6
O1—Co1—O889.66 (7)C5—C4—H4120.6
O6—Co1—O8170.18 (8)N1—C5—C4121.5 (2)
O7—Co1—N194.23 (8)N1—C5—C6115.7 (2)
O1—Co1—N1173.49 (7)C4—C5—C6122.7 (3)
O6—Co1—N194.57 (8)N2—C6—C7121.6 (2)
O8—Co1—N195.25 (8)N2—C6—C5114.8 (2)
O7—Co1—N2171.44 (9)C7—C6—C5123.6 (3)
O1—Co1—N298.51 (8)C8—C7—C6119.2 (3)
O6—Co1—N292.05 (8)C8—C7—H7120.4
O8—Co1—N290.49 (8)C6—C7—H7120.4
N1—Co1—N277.21 (8)C9—C8—C7119.4 (3)
O4—S1—O5113.16 (14)C9—C8—H8120.3
O4—S1—O3113.37 (12)C7—C8—H8120.3
O5—S1—O3111.66 (12)C8—C9—C10118.9 (3)
O4—S1—C13107.17 (11)C8—C9—H9120.6
O5—S1—C13105.05 (14)C10—C9—H9120.6
O3—S1—C13105.68 (12)N2—C10—C9122.4 (3)
C11—O1—Co1132.32 (16)N2—C10—H10118.8
Co1—O6—H6A109.6C9—C10—H10118.8
Co1—O6—H6B127.4O2—C11—O1125.7 (2)
H6A—O6—H6B102.7O2—C11—C12119.7 (2)
Co1—O7—H7A117.6O1—C11—C12114.5 (2)
Co1—O7—H7B128.6C13—C12—C17118.0 (2)
H7A—O7—H7B104.9C13—C12—C11124.2 (2)
Co1—O8—H8A118.3C17—C12—C11117.5 (2)
Co1—O8—H8B103.2C14—C13—C12120.9 (2)
H8A—O8—H8B121.7C14—C13—S1116.5 (2)
C1—N1—C5118.2 (2)C12—C13—S1122.56 (19)
C1—N1—Co1125.7 (2)C13—C14—C15119.6 (3)
C5—N1—Co1115.97 (16)C13—C14—H14120.2
C10—N2—C6118.4 (2)C15—C14—H14120.2
C10—N2—Co1125.5 (2)C16—C15—C14120.4 (3)
C6—N2—Co1116.07 (16)C16—C15—H15119.8
N1—C1—C2123.3 (3)C14—C15—H15119.8
N1—C1—H1118.3C17—C16—C15120.1 (3)
C2—C1—H1118.3C17—C16—H16120.0
C3—C2—C1118.3 (3)C15—C16—H16120.0
C3—C2—H2120.8C16—C17—C12120.9 (3)
C1—C2—H2120.8C16—C17—H17119.6
C2—C3—C4119.7 (3)C12—C17—H17119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O20.822.022.780 (3)155
O8—H8A···O3i0.822.082.873 (3)164
O7—H7B···O5i0.821.902.717 (3)178
O7—H7A···O30.821.892.692 (3)167
O6—H6B···O2ii0.821.932.741 (3)173
O6—H6A···O40.822.032.842 (3)172
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C7H4O5S)(C10H8N2)(H2O)3]
Mr469.32
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)7.4546 (7), 12.3272 (11), 10.5333 (9)
β (°) 90.142 (11)
V3)967.95 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.32 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.731, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
5336, 2602, 2565
Rint0.021
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.07
No. of reflections2602
No. of parameters262
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), with 1897 Friedel pairs
Absolute structure parameter0.015 (10)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O72.085 (2)Co1—O82.112 (2)
Co1—O12.092 (2)Co1—N12.115 (2)
Co1—O62.094 (2)Co1—N22.118 (2)
O7—Co1—O190.00 (8)O6—Co1—N194.57 (8)
O7—Co1—O688.49 (8)O8—Co1—N195.25 (8)
O1—Co1—O680.58 (7)O7—Co1—N2171.44 (9)
O7—Co1—O890.41 (8)O1—Co1—N298.51 (8)
O1—Co1—O889.66 (7)O6—Co1—N292.05 (8)
O6—Co1—O8170.18 (8)O8—Co1—N290.49 (8)
O7—Co1—N194.23 (8)N1—Co1—N277.21 (8)
O1—Co1—N1173.49 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O20.822.022.780 (3)155
O8—H8A···O3i0.822.082.873 (3)164
O7—H7B···O5i0.821.902.717 (3)178
O7—H7A···O30.821.892.692 (3)167
O6—H6B···O2ii0.821.932.741 (3)173
O6—H6A···O40.822.032.842 (3)172
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds