Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C8H12N+·C23H36NO3·H2O, has one mol­ecule of N-tetra­deca­noyl-L-phenyl­alanine and one mol­ecule of (R)-1-phenyl­ethyl­amine as a diastereoisomeric salt, and a water mol­ecule in the asymmetric unit. In the crystal structure, the packing of the mol­ecules is stabilized by N—H...O and O—H...O hydrogen bonds involving the amide, ammonium and carboxyl­ate groups, and the solvent water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040511/is6153sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040511/is6153Isup2.hkl
Contains datablock I

CCDC reference: 296585

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.068
  • wR factor = 0.151
  • Data-to-parameter ratio = 10.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5 PLAT355_ALERT_3_C Long O-H Bond (0.82A) O4 - H50 ... 1.05 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 3774 Count of symmetry unique reflns 3905 Completeness (_total/calc) 96.65% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

N-Acyl amino acids are generally formed by condensation of amino acids with fatty acids and produce water-soluble anionic surfactants when their acid moieties are neutralized with a range of bases. These compounds are widely used as additives, dispersants and detergents in a variety of industrial and commercial applications due to their biodegradability and low toxicity (Takehara, 1984). There are also growing concerns over the molecular associations of chiral surfactants (Shinitzky & Haimovitz, 1993; Parazak et al., 1994; Ohta et al., 2003) and their applications to chiral analytical techniques such as electrophoresis (Taurus et al., 2003). When N-acyl amino acids are neutralized with optically active bases, diastereoisomeric surfactant salts are formed. Structural studies on these diastereomeric salts may provide the basis for understanding the mechanism of chiral discrimination of N-acyl amino acid surfactants. In this work, we have prepared a diastereomeric salt, (I), from N-tetradecanoyl-L-phenylalanine and (R)-1-phenylethylamine as a model of chiral discrimination of N-acyl amino acids and determined its structure.

The conformation of the tetradecanoyl chain is as most often found for larger alkanes, i.e. staggered with the largest substituents at any C—C bond antiperiplanar with respect to each other (Fig. 1). The C—C bond lengths within the chain range from 1.518 (6) to 1.533 (5) Å and the anglesfrom 112.8 (3) to 114.1 (3)°. These values are similar to those found in a related fatty acid (Amai et al., 1998).

The molecular packing is such that the hydrocarbon chains lie side by side, with neighboring hydrophillic heads pointing in opposite directions. The hydrophilic heads are connected by a network of hydrogen bonds involving the carboxylate group of N-tetradecanoyl-L-phenylalanine, the ammonium group of (R)-1-phenylethylamine and the water molecule (Table 1 and Fig. 2). The amide linkages of N-tetradecanoyl-L-phenylalanine molecules form a N—H···O hydrogen-bondied chain running along the b axis.

Experimental top

N-tetradecanoyl-l-phenylalanine was prepared by the reaction of l-phenylalanine with tetradecanoyl chloride as described previously (Miyagishi & Nishida, 1978) and was recrystallized from an acetone/methanol solution three times. The purity was checked by HPLC and DSC and by observing no minimum on the surface tension vs concentration curves at 298.15 K. The title compound was obtained by neutralization of N-tetradecanoyl-l-phenylalanine with equimolar of (R)-1-phenylethylamine in methanol. After evaporation of the solvent, the residue was recrystallized from a methanol/water solution to obtain suitable crystals for X-ray diffraction (m.p. 374–376 K).

Refinement top

H atoms involved in hydrogen bonds were located in a difference map, and their positional parameters were refined. The Uiso(H) values were set at 1.2Ueq(N or O). Other H atoms were included in calculated positions using a riding-model approximation, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). Due to the absence of any significant anomalous scatterers in the crystal, Friedel pairs were merged before the final refinement. The absolute configuration has been assigned on the basis of the known configuration of the reagents.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: MITHRIL90 (Gilmore, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Johnson & Burnett, 1996) and Mercury (Bruno et al., 2002); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the b axis. Dashed lines indicate the hydrogen-bonding interactions. H atoms have been omitted for clarity.
(R)-1-Phenylethylammonium N-tetradecanoyl-L-phenylalaninate monohydrate top
Crystal data top
C8H12N+·C23H36NO3·H2OF(000) = 564
Mr = 514.73Dx = 1.126 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ybCell parameters from 5442 reflections
a = 10.920 (4) Åθ = 7.2–27.5°
b = 4.9902 (17) ŵ = 0.07 mm1
c = 27.926 (10) ÅT = 123 K
β = 94.085 (8)°Plate, colorless
V = 1517.9 (9) Å30.50 × 0.20 × 0.10 mm
Z = 2
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
Rint = 0.100
Detector resolution: 14.63 pixels mm-1θmax = 27.5°
ω scansh = 1314
16351 measured reflectionsk = 66
3774 independent reflectionsl = 3535
2920 reflections with I > 2σ(I)
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.0384P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.20 e Å3
3774 reflectionsΔρmin = 0.23 e Å3
352 parameters
Crystal data top
C8H12N+·C23H36NO3·H2OV = 1517.9 (9) Å3
Mr = 514.73Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.920 (4) ŵ = 0.07 mm1
b = 4.9902 (17) ÅT = 123 K
c = 27.926 (10) Å0.50 × 0.20 × 0.10 mm
β = 94.085 (8)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2920 reflections with I > 2σ(I)
16351 measured reflectionsRint = 0.100
3774 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068352 parameters
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
3774 reflectionsΔρmin = 0.23 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2957 (2)1.0792 (7)0.41845 (10)0.0360 (7)
O20.4593 (2)0.9265 (5)0.38397 (8)0.0217 (5)
O30.3805 (2)1.2925 (5)0.28462 (10)0.0275 (6)
O40.5634 (3)0.5884 (6)0.49885 (10)0.0270 (6)
N10.3314 (3)0.8609 (6)0.29735 (10)0.0196 (6)
N20.4315 (3)0.9376 (7)0.59795 (12)0.0210 (6)
C10.3455 (3)0.9770 (7)0.38413 (13)0.0211 (7)
C20.2615 (3)0.9225 (7)0.33811 (12)0.0187 (7)
C30.1674 (3)0.7025 (8)0.34547 (12)0.0219 (7)
C40.0711 (3)0.6899 (8)0.30375 (13)0.0236 (7)
C50.0296 (3)0.8655 (8)0.30198 (14)0.0303 (9)
C60.1155 (4)0.8644 (9)0.26247 (16)0.0360 (10)
C70.1032 (4)0.6868 (10)0.22508 (15)0.0350 (9)
C80.0052 (4)0.5129 (9)0.22649 (15)0.0341 (9)
C90.0817 (4)0.5123 (8)0.26557 (14)0.0297 (9)
C100.3875 (3)1.0526 (7)0.27413 (13)0.0216 (7)
C110.4583 (3)0.9621 (8)0.23226 (13)0.0251 (8)
C120.3802 (4)0.8076 (8)0.19401 (13)0.0252 (8)
C130.2637 (3)0.9523 (8)0.17555 (12)0.0236 (7)
C140.1933 (4)0.8035 (8)0.13483 (13)0.0265 (8)
C150.0744 (3)0.9407 (8)0.11627 (13)0.0242 (7)
C160.0052 (4)0.7932 (8)0.07511 (13)0.0275 (8)
C170.1135 (4)0.9302 (8)0.05686 (13)0.0272 (8)
C180.1797 (4)0.7899 (8)0.01355 (13)0.0261 (8)
C190.2992 (3)0.9248 (8)0.00424 (13)0.0250 (7)
C200.3640 (3)0.7883 (8)0.04777 (12)0.0246 (8)
C210.4838 (3)0.9219 (8)0.06560 (13)0.0269 (8)
C220.5478 (4)0.7807 (8)0.10908 (13)0.0307 (9)
C230.6651 (4)0.9180 (9)0.12842 (17)0.0390 (10)
C240.3100 (3)0.9530 (8)0.61958 (13)0.0212 (7)
C250.2150 (3)0.7917 (7)0.59119 (12)0.0210 (7)
C260.0915 (3)0.8420 (8)0.59840 (13)0.0249 (8)
C270.0017 (3)0.6921 (9)0.57536 (14)0.0272 (8)
C280.0271 (3)0.4880 (8)0.54484 (14)0.0267 (8)
C290.1480 (3)0.4365 (8)0.53622 (14)0.0258 (8)
C300.2418 (3)0.5884 (8)0.55977 (13)0.0235 (8)
C310.3274 (4)0.8684 (9)0.67217 (14)0.0325 (10)
H10.347 (4)0.681 (9)0.2894 (14)0.0233*
H20.21731.07890.33070.0225*
H30.20820.53100.34830.0257*
H40.12800.73470.37410.0257*
H50.03950.98130.32780.0364*
H60.18260.98600.26130.0436*
H70.16270.68070.19840.0422*
H80.00320.38710.20060.0399*
H90.14890.38690.26610.0351*
H100.52360.84550.24420.0301*
H110.49091.11200.21770.0301*
H120.35740.63720.20730.0294*
H130.42820.77200.16750.0294*
H140.21220.96700.20130.0284*
H150.28541.12020.16440.0284*
H160.17360.62570.14590.0314*
H170.24470.78380.10890.0314*
H180.02240.94990.14200.0290*
H190.09371.11090.10550.0290*
H200.01390.61400.08590.0326*
H210.05700.77580.04930.0326*
H220.16730.92990.08220.0324*
H230.09511.10430.04790.0324*
H240.19750.60680.02240.0314*
H250.12670.78400.01190.0314*
H260.35290.91960.02110.0294*
H270.28181.10020.01260.0294*
H280.38130.60380.03930.0294*
H290.31030.78480.07300.0294*
H300.53790.91760.04040.0323*
H310.46701.09730.07430.0323*
H320.56710.59900.10000.0363*
H330.49260.77110.13390.0363*
H340.72160.91990.10410.0468*
H350.70050.81600.15520.0468*
H360.64711.09090.13820.0468*
H370.460 (4)0.773 (10)0.6014 (15)0.0248*
H380.480 (4)1.085 (9)0.6111 (14)0.0248*
H390.428 (4)0.995 (9)0.5688 (16)0.0248*
H400.28421.13070.61870.0255*
H410.07120.97790.61950.0302*
H420.08500.72960.58050.0326*
H430.03660.38210.52960.0320*
H440.16720.29560.51440.0308*
H450.32500.54650.55420.0275*
H460.35290.68210.67400.0393*
H470.38850.97380.68830.0393*
H480.25230.88400.68690.0393*
H490.537 (4)0.754 (10)0.4968 (15)0.0274*
H500.617 (4)0.593 (9)0.5315 (15)0.0274*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (14)0.0554 (18)0.0283 (14)0.0092 (14)0.0032 (11)0.0166 (14)
O20.0143 (11)0.0232 (12)0.0274 (13)0.0005 (10)0.0012 (9)0.0011 (11)
O30.0258 (14)0.0190 (12)0.0375 (15)0.0016 (11)0.0002 (11)0.0018 (12)
O40.0272 (14)0.0278 (14)0.0260 (14)0.0017 (12)0.0009 (11)0.0013 (12)
N10.0195 (14)0.0170 (14)0.0221 (14)0.0019 (12)0.0000 (11)0.0020 (12)
N20.0189 (15)0.0211 (15)0.0227 (15)0.0024 (14)0.0004 (12)0.0031 (14)
C10.0169 (16)0.0198 (17)0.0260 (18)0.0018 (14)0.0019 (13)0.0023 (15)
C20.0144 (15)0.0170 (16)0.0245 (17)0.0025 (14)0.0008 (13)0.0007 (15)
C30.0217 (18)0.0229 (17)0.0205 (17)0.0008 (15)0.0024 (14)0.0015 (15)
C40.0195 (17)0.0258 (17)0.0252 (18)0.0056 (16)0.0001 (14)0.0026 (16)
C50.0231 (18)0.035 (2)0.033 (2)0.0006 (17)0.0015 (16)0.0057 (18)
C60.027 (2)0.040 (2)0.041 (2)0.0028 (19)0.0073 (17)0.002 (2)
C70.029 (2)0.041 (2)0.034 (2)0.012 (2)0.0093 (17)0.002 (2)
C80.039 (2)0.032 (2)0.031 (2)0.0079 (19)0.0016 (17)0.0095 (17)
C90.028 (2)0.027 (2)0.034 (2)0.0008 (17)0.0043 (16)0.0024 (17)
C100.0170 (17)0.0206 (18)0.0262 (18)0.0008 (15)0.0067 (14)0.0030 (15)
C110.0183 (17)0.0267 (18)0.0303 (19)0.0029 (16)0.0015 (14)0.0054 (17)
C120.0280 (19)0.0252 (18)0.0231 (17)0.0021 (17)0.0070 (14)0.0027 (16)
C130.0259 (18)0.0240 (17)0.0208 (17)0.0030 (16)0.0004 (14)0.0004 (16)
C140.0294 (19)0.0237 (18)0.0259 (18)0.0035 (16)0.0015 (15)0.0003 (16)
C150.0252 (17)0.0232 (17)0.0237 (17)0.0018 (16)0.0024 (14)0.0002 (16)
C160.031 (2)0.0233 (18)0.0276 (18)0.0002 (17)0.0039 (15)0.0041 (17)
C170.0311 (19)0.0219 (17)0.0281 (19)0.0004 (17)0.0024 (15)0.0029 (17)
C180.0293 (19)0.0219 (17)0.0265 (18)0.0005 (16)0.0032 (15)0.0016 (16)
C190.0268 (18)0.0209 (17)0.0269 (18)0.0004 (16)0.0006 (14)0.0008 (16)
C200.0256 (18)0.0251 (18)0.0228 (17)0.0009 (16)0.0003 (14)0.0011 (16)
C210.0270 (18)0.0248 (18)0.0290 (19)0.0007 (17)0.0017 (15)0.0006 (17)
C220.035 (2)0.031 (2)0.0260 (19)0.0031 (19)0.0003 (16)0.0012 (18)
C230.030 (2)0.036 (2)0.050 (3)0.000 (2)0.0110 (18)0.003 (2)
C240.0149 (15)0.0212 (16)0.0276 (17)0.0001 (15)0.0009 (13)0.0001 (16)
C250.0218 (17)0.0200 (16)0.0211 (16)0.0010 (15)0.0011 (13)0.0073 (15)
C260.0172 (17)0.030 (2)0.0276 (18)0.0019 (16)0.0045 (14)0.0008 (16)
C270.0182 (17)0.0319 (19)0.032 (2)0.0010 (16)0.0019 (14)0.0064 (18)
C280.0217 (18)0.0242 (18)0.033 (2)0.0081 (16)0.0064 (15)0.0070 (16)
C290.0233 (18)0.0207 (16)0.0332 (19)0.0016 (16)0.0005 (15)0.0036 (17)
C300.0162 (17)0.0261 (18)0.0278 (18)0.0051 (15)0.0008 (14)0.0007 (16)
C310.0257 (19)0.049 (3)0.0229 (18)0.0050 (19)0.0026 (15)0.0016 (18)
Geometric parameters (Å, º) top
O1—C11.245 (5)C15—H180.95
O2—C11.268 (4)C15—H190.93
O3—C101.236 (4)C16—C171.521 (5)
O4—H490.88 (5)C16—H200.97
O4—H501.05 (4)C16—H210.95
N1—C21.448 (4)C17—C181.533 (5)
N1—C101.329 (5)C17—H220.95
N1—H10.94 (4)C17—H230.93
N2—C241.499 (5)C18—C191.520 (5)
N2—H370.88 (5)C18—H240.97
N2—H380.96 (4)C18—H250.95
N2—H390.86 (4)C19—C201.523 (5)
C1—C21.549 (5)C19—H260.95
C2—C31.528 (5)C19—H270.93
C2—H20.93C20—C211.520 (5)
C3—C41.514 (5)C20—H280.97
C3—H30.97C20—H290.95
C3—H40.95C21—C221.529 (5)
C4—C51.404 (5)C21—H300.95
C4—C91.398 (6)C21—H310.93
C5—C61.396 (6)C22—C231.518 (6)
C5—H50.94C22—H320.97
C6—C71.383 (6)C22—H330.95
C6—H60.95C23—H340.95
C7—C81.376 (6)C23—H350.96
C7—H70.95C23—H360.93
C8—C91.394 (6)C24—C251.495 (5)
C8—H80.97C24—C311.527 (5)
C9—H90.96C24—H400.93
C10—C111.516 (5)C25—C261.400 (5)
C11—C121.527 (5)C25—C301.386 (5)
C11—H100.96C26—C271.384 (5)
C11—H110.93C26—H410.94
C12—C131.521 (5)C27—C281.378 (6)
C12—H120.97C27—H420.95
C12—H130.95C28—C291.383 (5)
C13—C141.520 (5)C28—H430.95
C13—H140.95C29—C301.400 (5)
C13—H150.93C29—H440.96
C14—C151.525 (5)C30—H450.96
C14—H160.97C31—H460.97
C14—H170.95C31—H470.94
C15—C161.520 (5)C31—H480.95
O1···O4i2.683 (4)O3···C9iv3.448 (5)
O1···C27ii3.276 (5)O4···N2iii2.810 (4)
O1···N2i3.532 (4)O4···O4i2.857 (4)
O2···N2iii2.747 (4)O4···O4iii2.857 (4)
O2···N2i2.845 (4)O4···C1iii3.393 (4)
O2···O4i3.397 (4)N2···C1iii3.360 (5)
O2···C24iii3.461 (4)C26···C29iv3.514 (6)
O3···N1iv2.913 (4)C28···C28ii3.555 (6)
O3···C31i3.351 (5)C28···C28v3.555 (6)
H49—O4—H50101 (4)C15—C16—H20108.6
C2—N1—C10121.2 (3)C15—C16—H21109.1
C2—N1—H1120 (3)C17—C16—H20108.7
C10—N1—H1118 (3)C17—C16—H21109.0
C24—N2—H37109 (3)H20—C16—H21107.6
C24—N2—H38107 (2)C16—C17—C18113.7 (3)
C24—N2—H39113 (3)C16—C17—H22107.8
H37—N2—H38119 (4)C16—C17—H23108.3
H37—N2—H39114 (4)C18—C17—H22107.8
H38—N2—H3995 (4)C18—C17—H23108.3
O1—C1—O2124.5 (3)H22—C17—H23111.0
O1—C1—C2116.5 (3)C17—C18—C19113.7 (3)
O2—C1—C2119.0 (3)C17—C18—H24108.7
N1—C2—C1112.1 (3)C17—C18—H25109.1
N1—C2—C3110.5 (3)C19—C18—H24108.5
N1—C2—H2107.2C19—C18—H25108.9
C1—C2—C3112.3 (3)H24—C18—H25107.9
C1—C2—H2107.7C18—C19—C20113.7 (3)
C3—C2—H2106.7C18—C19—H26107.8
C2—C3—C4111.3 (3)C18—C19—H27108.2
C2—C3—H3109.7C20—C19—H26107.8
C2—C3—H4110.0C20—C19—H27108.2
C4—C3—H3108.6H26—C19—H27111.1
C4—C3—H4108.9C19—C20—C21113.9 (3)
H3—C3—H4108.4C19—C20—H28108.5
C3—C4—C5120.0 (3)C19—C20—H29109.0
C3—C4—C9121.5 (3)C21—C20—H28108.5
C5—C4—C9118.4 (3)C21—C20—H29109.1
C4—C5—C6120.4 (4)H28—C20—H29107.7
C4—C5—H5119.5C20—C21—C22113.1 (3)
C6—C5—H5120.1C20—C21—H30108.2
C5—C6—C7120.2 (4)C20—C21—H31108.5
C5—C6—H6119.9C22—C21—H30107.8
C7—C6—H6119.9C22—C21—H31108.2
C6—C7—C8120.0 (4)H30—C21—H31111.1
C6—C7—H7120.8C21—C22—C23113.7 (3)
C8—C7—H7119.2C21—C22—H32108.6
C7—C8—C9120.5 (4)C21—C22—H33108.9
C7—C8—H8120.2C23—C22—H32108.8
C9—C8—H8119.2C23—C22—H33109.1
C4—C9—C8120.5 (4)H32—C22—H33107.8
C4—C9—H9120.3C22—C23—H34108.9
C8—C9—H9119.2C22—C23—H35108.6
O3—C10—N1122.9 (3)C22—C23—H36109.4
O3—C10—C11121.0 (3)H34—C23—H35108.4
N1—C10—C11116.1 (3)H34—C23—H36111.2
C10—C11—C12113.6 (3)H35—C23—H36110.2
C10—C11—H10108.6N2—C24—C25111.1 (3)
C10—C11—H11109.2N2—C24—C31108.7 (3)
C12—C11—H10107.5N2—C24—H40108.2
C12—C11—H11108.1C25—C24—C31113.3 (3)
H10—C11—H11109.8C25—C24—H40107.6
C11—C12—C13114.1 (3)C31—C24—H40107.9
C11—C12—H12108.8C24—C25—C26117.8 (3)
C11—C12—H13109.1C24—C25—C30124.1 (3)
C13—C12—H12108.3C26—C25—C30118.1 (3)
C13—C12—H13108.5C25—C26—C27121.3 (4)
H12—C12—H13107.7C25—C26—H41119.6
C12—C13—C14112.8 (3)C27—C26—H41119.0
C12—C13—H14107.9C26—C27—C28119.6 (3)
C12—C13—H15108.3C26—C27—H42120.2
C14—C13—H14108.1C28—C27—H42120.2
C14—C13—H15108.5C27—C28—C29120.5 (3)
H14—C13—H15111.3C27—C28—H43119.7
C13—C14—C15114.1 (3)C29—C28—H43119.8
C13—C14—H16108.7C28—C29—C30119.5 (4)
C13—C14—H17108.9C28—C29—H44120.0
C15—C14—H16108.5C30—C29—H44120.5
C15—C14—H17108.8C25—C30—C29120.9 (3)
H16—C14—H17107.7C25—C30—H45120.6
C14—C15—C16113.9 (3)C29—C30—H45118.5
C14—C15—H18107.8C24—C31—H46109.4
C14—C15—H19108.2C24—C31—H47110.0
C16—C15—H18107.7C24—C31—H48110.0
C16—C15—H19108.0H46—C31—H47108.6
H18—C15—H19111.3H46—C31—H48108.1
C15—C16—C17113.7 (3)H47—C31—H48110.7
O1—C1—C2—N1167.1 (3)C6—C7—C8—C90.5 (7)
O1—C1—C2—C367.8 (4)C10—C11—C12—C1352.9 (4)
O2—C1—C2—N110.0 (4)C11—C12—C13—C14175.5 (3)
O2—C1—C2—C3115.1 (4)C12—C13—C14—C15178.7 (3)
O3—C10—N1—C22.4 (5)C13—C14—C15—C16179.2 (3)
O3—C10—C11—C12121.3 (4)C14—C15—C16—C17179.8 (3)
N1—C2—C3—C465.2 (4)C15—C16—C17—C18176.8 (3)
N1—C10—C11—C1256.7 (4)C16—C17—C18—C19179.2 (3)
N2—C24—C25—C26162.9 (3)C17—C18—C19—C20179.1 (3)
N2—C24—C25—C3019.9 (5)C18—C19—C20—C21179.8 (3)
C1—C2—N1—C1076.7 (4)C19—C20—C21—C22179.6 (3)
C1—C2—C3—C4168.8 (3)C20—C21—C22—C23177.8 (3)
C2—N1—C10—C11179.7 (3)C24—C25—C26—C27176.7 (4)
C2—C3—C4—C582.7 (4)C24—C25—C30—C29176.7 (3)
C2—C3—C4—C995.1 (4)C25—C26—C27—C280.3 (6)
C3—C2—N1—C10157.2 (3)C25—C30—C29—C280.7 (6)
C3—C4—C5—C6176.8 (4)C26—C25—C24—C3174.5 (4)
C3—C4—C9—C8177.0 (4)C26—C25—C30—C290.5 (5)
C4—C5—C6—C71.1 (6)C26—C27—C28—C291.6 (6)
C4—C9—C8—C70.5 (6)C27—C26—C25—C300.7 (6)
C5—C4—C9—C80.8 (6)C27—C28—C29—C301.8 (6)
C5—C6—C7—C80.8 (7)C30—C25—C24—C31102.7 (4)
C6—C5—C4—C91.1 (6)C30—C25—C24—C31102.7 (4)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x, y+1, z; (v) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H49···O4i0.88 (5)2.01 (5)2.857 (4)164 (4)
O4—H50···O1iii1.05 (4)1.64 (4)2.683 (4)176 (4)
N1—H1···O3vi0.94 (4)1.98 (4)2.913 (4)170 (4)
N2—H37···O2iii0.88 (5)1.97 (5)2.845 (4)172 (3)
N2—H38···O2i0.96 (4)1.83 (4)2.747 (4)158 (4)
N2—H39···O4i0.86 (4)1.96 (4)2.810 (4)172 (4)
Symmetry codes: (i) x+1, y+1/2, z+1; (iii) x+1, y1/2, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H12N+·C23H36NO3·H2O
Mr514.73
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)10.920 (4), 4.9902 (17), 27.926 (10)
β (°) 94.085 (8)
V3)1517.9 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16351, 3774, 2920
Rint0.100
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.151, 1.06
No. of reflections3774
No. of parameters352
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, TEXSAN (Molecular Structure Corporation, 2000), MITHRIL90 (Gilmore, 1990), SHELXL93 (Sheldrick, 1993), ORTEPIII (Johnson & Burnett, 1996) and Mercury (Bruno et al., 2002), TEXSAN.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H49···O4i0.88 (5)2.01 (5)2.857 (4)164 (4)
O4—H50···O1ii1.05 (4)1.64 (4)2.683 (4)176 (4)
N1—H1···O3iii0.94 (4)1.98 (4)2.913 (4)170 (4)
N2—H37···O2ii0.88 (5)1.97 (5)2.845 (4)172 (3)
N2—H38···O2i0.96 (4)1.83 (4)2.747 (4)158 (4)
N2—H39···O4i0.86 (4)1.96 (4)2.810 (4)172 (4)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds