Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Multiwavelength anomalous diffraction (MAD) phasing has become a routinely used tool for determining new macromolecular structures. The MAD method has stringent data-­collection requirements, typically necessitating radiation-resistant crystals and access to a tunable synchrotron beamline. In cases where synchrotron time, monochromator tunability or radiation damage is a concern or where high-throughput structure determination is desired, phasing methods capable of producing interpretable electron-density maps from less data become attractive alternatives to MAD. The increasing availability of tunable synchrotron data-collection facilities prompted the authors to revisit single-wavelength anomalous diffraction (SAD) phasing used in conjunction with a phase-ambiguity resolving method such as solvent flattening. The anomalous diffraction from seven different selenomethionine-labelled protein crystals has been analysed and it is shown that in conjunction with solvent flattening, diffraction data from the peak anomalous wavelength alone can produce interpretable electron-density maps of comparable quality to those resulting from full MAD phasing. Single-wavelength anomalous diffraction (SAD) phasing can therefore be a time-efficient alternative to MAD. The data also show that radiation damage can have a significant effect on the quality of SAD/MAD diffraction data. These results may be useful in the design of optimal strategies for collection of the diffraction data.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds