Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020260/lh2371sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020260/lh2371Isup2.hkl |
CCDC reference: 646682
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.006 Å
- R factor = 0.029
- wR factor = 0.077
- Data-to-parameter ratio = 16.2
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.80 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.44 From the CIF: _reflns_number_total 3335 Count of symmetry unique reflns 1773 Completeness (_total/calc) 188.10% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1562 Fraction of Friedel pairs measured 0.881 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
For synthetic background, see: Ghosh et al. (2005), and for previously published structures related to the topic, see: Glidewell et al. (2002, 2003). For preparation details, see: Nobles & Thompson (1965).
(4-Nitrophenylsulfanyl)acetic acid was prepared by a nucleophilic reaction of chloroacetic acid and 4-nitrothiophenol under basic conditions. (4-nitrophenylsulfanyl)acetic acid was then oxidized using 30% aqueous hydrogen peroxide in acetic anhydride solution, producing 4-nitrophenylsulfinyl acetic acid (Nobles & Thompson, 1965). Zinc nitrate hexahydrate (0.586 g, 2 mmol) and (4-nitrophenylsulfinyl)acetic acid (0.458 g, 2 mmol) and 4,4'-bipyridine (0.312 g, 2 mmol) were dissolved in water and the pH was adjusted to 6 with 0.01M sodium hydroxide, colorless crystals separated from the filtered solution after several days.
H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, withwith C—H = 0.93 Å (aromatic C) or C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).
4,4'-Bipyridine and organic aromatic carboxylic acid ligands are often used in syntheses to bridge metal atoms and these compound can demonstrate fascinating network topologies and potential application in the field of host–guest chemistry, ion exchange and catalysis (Ghosh et al., 2005). Simple carboxylic acids containing the 4-nitrophenyl group exhibit a variety of supramolecular aggregation patterns (Glidewell et al., 2002). Recently, our attention has been focused on 4-nitrophenylsulfinyl acetic acid, whose crystal structure has been reported previously (Glidewell et al., 2003).
Complex(I) consists of linear chains formed through 4,4'-bipy ligands linking six-coordinate ZnII ions (Fig. 1). The ZnII ion has slightly distorted octahedral geometry. Two N donors of two 4,4'-bipy ligands and two coordinated water molecules lie in the equatorial plane, while two O-atom donors of two (4-nitrophenylsulfinyl)acetate ligands are in the axial positions.
These one-dimensional chains are connected into a three dimensional network via intermolecular O—H···O hydrogen bonds(Table 1),(Fig. 2).
For synthetic background, see: Ghosh et al. (2005), and for previously published structures related to the topic, see: Glidewell et al. (2002, 2003). For preparation details, see: Nobles & Thompson (1965).
Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.
[Zn(C8H6NO5S)2(C10H8N2)(H2O)2] | F(000) = 2928 |
Mr = 713.98 | Dx = 1.604 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 12942 reflections |
a = 20.079 (4) Å | θ = 6.3–54.9° |
b = 25.646 (5) Å | µ = 1.04 mm−1 |
c = 11.485 (2) Å | T = 293 K |
V = 5914 (2) Å3 | Block, colourless |
Z = 8 | 0.28 × 0.23 × 0.20 mm |
Rigaku RAXIS-RAPID diffractometer | 3335 independent reflections |
Radiation source: fine-focus sealed tube | 3138 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −26→26 |
Tmin = 0.761, Tmax = 0.822 | k = −33→33 |
14073 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.047P)2 + 4.1913P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.005 |
3335 reflections | Δρmax = 0.55 e Å−3 |
206 parameters | Δρmin = −0.32 e Å−3 |
13 restraints | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.022 (14) |
[Zn(C8H6NO5S)2(C10H8N2)(H2O)2] | V = 5914 (2) Å3 |
Mr = 713.98 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 20.079 (4) Å | µ = 1.04 mm−1 |
b = 25.646 (5) Å | T = 293 K |
c = 11.485 (2) Å | 0.28 × 0.23 × 0.20 mm |
Rigaku RAXIS-RAPID diffractometer | 3335 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3138 reflections with I > 2σ(I) |
Tmin = 0.761, Tmax = 0.822 | Rint = 0.027 |
14073 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.077 | Δρmax = 0.55 e Å−3 |
S = 1.07 | Δρmin = −0.32 e Å−3 |
3335 reflections | Absolute structure: Flack (1983) |
206 parameters | Absolute structure parameter: 0.022 (14) |
13 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.02856 (17) | 0.72739 (13) | 0.5181 (3) | 0.0284 (7) | |
C2 | 0.0666 (2) | 0.70549 (15) | 0.4295 (3) | 0.0362 (8) | |
H1 | 0.0647 | 0.7189 | 0.3544 | 0.043* | |
C3 | 0.10728 (19) | 0.66355 (14) | 0.4545 (3) | 0.0374 (9) | |
H2 | 0.1334 | 0.6484 | 0.3969 | 0.045* | |
C4 | 0.1084 (2) | 0.64463 (14) | 0.5672 (3) | 0.0338 (8) | |
C5 | 0.0714 (2) | 0.66611 (15) | 0.6570 (3) | 0.0398 (9) | |
H3 | 0.0733 | 0.6524 | 0.7319 | 0.048* | |
C6 | 0.0315 (2) | 0.70887 (15) | 0.6312 (3) | 0.0364 (8) | |
H4 | 0.0069 | 0.7250 | 0.6897 | 0.044* | |
C7 | 0.03217 (17) | 0.83002 (12) | 0.4745 (4) | 0.0310 (7) | |
H5 | 0.0590 | 0.8310 | 0.5448 | 0.037* | |
H6 | 0.0614 | 0.8232 | 0.4091 | 0.037* | |
C8 | −0.00307 (18) | 0.88235 (12) | 0.4576 (3) | 0.0280 (7) | |
C9 | 0.0212 (2) | 1.04111 (14) | 0.7267 (4) | 0.0370 (8) | |
H7 | 0.0369 | 1.0699 | 0.6860 | 0.044* | |
C10 | 0.0210 (2) | 1.04293 (17) | 0.8483 (4) | 0.0414 (9) | |
H8 | 0.0349 | 1.0729 | 0.8869 | 0.050* | |
C11 | 0.0000 | 1.0000 | 0.9105 (5) | 0.0300 (13) | |
C12 | 0.0000 | 1.0000 | 1.0404 (5) | 0.0359 (14) | |
C13 | 0.0321 (2) | 0.96088 (16) | 1.1036 (4) | 0.0383 (9) | |
H9 | 0.0536 | 0.9338 | 1.0650 | 0.046* | |
C14 | 0.03179 (19) | 0.96264 (14) | 1.2234 (4) | 0.0355 (8) | |
H10 | 0.0545 | 0.9369 | 1.2643 | 0.043* | |
N1 | 0.1489 (2) | 0.59871 (17) | 0.5925 (4) | 0.0506 (9) | |
N2 | 0.0000 | 1.0000 | 0.6666 (4) | 0.0264 (10) | |
N3 | 0.0000 | 1.0000 | 1.2837 (4) | 0.0308 (11) | |
O1 | −0.06561 (15) | 0.78963 (11) | 0.5975 (3) | 0.0472 (7) | |
O2 | −0.06099 (15) | 0.88136 (10) | 0.4182 (3) | 0.0446 (7) | |
O3 | 0.03031 (12) | 0.92181 (8) | 0.4850 (2) | 0.0302 (5) | |
O4 | 0.1760 (2) | 0.57580 (17) | 0.5154 (4) | 0.0837 (12) | |
O5 | 0.1539 (2) | 0.58524 (18) | 0.6938 (4) | 0.0845 (12) | |
O6 | 0.10205 (11) | 1.02344 (9) | 0.4739 (2) | 0.0324 (5) | |
H12 | 0.1267 | 1.0044 | 0.4314 | 0.049* | |
H11 | 0.0976 | 1.0551 | 0.4537 | 0.049* | |
S2 | −0.02931 (4) | 0.77903 (3) | 0.48577 (9) | 0.0311 (2) | |
Zn1 | 0.0000 | 1.0000 | 0.47672 (3) | 0.02310 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0334 (17) | 0.0190 (14) | 0.0327 (19) | −0.0014 (12) | 0.0014 (15) | 0.0027 (13) |
C2 | 0.046 (2) | 0.0311 (17) | 0.0318 (18) | 0.0040 (16) | 0.0073 (17) | 0.0063 (15) |
C3 | 0.0390 (19) | 0.0333 (18) | 0.040 (2) | 0.0061 (15) | 0.0095 (16) | −0.0009 (15) |
C4 | 0.0373 (18) | 0.0277 (17) | 0.0365 (19) | 0.0073 (15) | −0.0023 (16) | 0.0044 (15) |
C5 | 0.048 (2) | 0.039 (2) | 0.0323 (19) | 0.0122 (18) | 0.0004 (17) | 0.0072 (16) |
C6 | 0.043 (2) | 0.0346 (19) | 0.032 (2) | 0.0091 (16) | 0.0062 (16) | 0.0000 (15) |
C7 | 0.0333 (16) | 0.0209 (14) | 0.0387 (17) | −0.0012 (12) | 0.0007 (16) | −0.0004 (15) |
C8 | 0.0412 (17) | 0.0217 (14) | 0.021 (2) | 0.0032 (14) | 0.0011 (14) | −0.0002 (12) |
C9 | 0.056 (2) | 0.0340 (18) | 0.0209 (16) | −0.0072 (17) | −0.0033 (18) | 0.0036 (15) |
C10 | 0.065 (3) | 0.037 (2) | 0.0219 (19) | −0.010 (2) | −0.0070 (18) | −0.0022 (16) |
C11 | 0.034 (3) | 0.039 (3) | 0.017 (3) | 0.000 (2) | 0.000 | 0.000 |
C12 | 0.046 (4) | 0.041 (4) | 0.020 (3) | −0.004 (2) | 0.000 | 0.000 |
C13 | 0.052 (2) | 0.039 (2) | 0.0238 (18) | 0.0089 (17) | 0.0028 (17) | −0.0022 (16) |
C14 | 0.0454 (19) | 0.0375 (18) | 0.0236 (17) | 0.0085 (15) | 0.0011 (18) | 0.0042 (15) |
N1 | 0.058 (2) | 0.048 (2) | 0.046 (2) | 0.0266 (18) | 0.0021 (18) | 0.0042 (17) |
N2 | 0.035 (3) | 0.027 (2) | 0.017 (2) | 0.0019 (16) | 0.000 | 0.000 |
N3 | 0.038 (3) | 0.035 (3) | 0.019 (2) | −0.0026 (17) | 0.000 | 0.000 |
O1 | 0.0427 (15) | 0.0356 (15) | 0.063 (2) | 0.0060 (12) | 0.0208 (15) | 0.0064 (14) |
O2 | 0.0513 (15) | 0.0249 (12) | 0.0578 (17) | 0.0043 (11) | −0.0216 (14) | −0.0069 (12) |
O3 | 0.0410 (12) | 0.0197 (9) | 0.0299 (12) | 0.0006 (9) | −0.0014 (12) | −0.0005 (10) |
O4 | 0.0909 (16) | 0.0800 (16) | 0.0802 (17) | 0.0424 (12) | 0.0035 (13) | −0.0019 (12) |
O5 | 0.0888 (16) | 0.0848 (16) | 0.0797 (17) | 0.0400 (12) | 0.0001 (13) | 0.0060 (13) |
O6 | 0.0356 (12) | 0.0293 (11) | 0.0323 (12) | 0.0041 (9) | 0.0041 (12) | 0.0017 (11) |
S2 | 0.0310 (4) | 0.0203 (3) | 0.0418 (5) | −0.0003 (3) | −0.0009 (4) | 0.0015 (4) |
Zn1 | 0.0327 (3) | 0.0192 (2) | 0.0174 (2) | −0.0002 (2) | 0.000 | 0.000 |
C1—C6 | 1.384 (5) | C11—C10i | 1.379 (5) |
C1—C2 | 1.391 (5) | C11—C12 | 1.492 (6) |
C1—S2 | 1.801 (3) | C12—C13i | 1.396 (5) |
C2—C3 | 1.381 (5) | C12—C13 | 1.396 (5) |
C2—H1 | 0.9300 | C13—C14 | 1.377 (6) |
C3—C4 | 1.383 (5) | C13—H9 | 0.9300 |
C3—H2 | 0.9300 | C14—N3 | 1.343 (5) |
C4—C5 | 1.384 (6) | C14—H10 | 0.9300 |
C4—N1 | 1.460 (5) | N1—O4 | 1.194 (6) |
C5—C6 | 1.390 (5) | N1—O5 | 1.217 (6) |
C5—H3 | 0.9300 | N2—C9i | 1.330 (4) |
C6—H4 | 0.9300 | N2—Zn1 | 2.181 (4) |
C7—C8 | 1.530 (4) | N3—C14i | 1.343 (5) |
C7—S2 | 1.803 (3) | N3—Zn1ii | 2.217 (5) |
C7—H5 | 0.9700 | O1—S2 | 1.500 (3) |
C7—H6 | 0.9700 | O3—Zn1 | 2.098 (2) |
C8—O2 | 1.248 (5) | O6—Zn1 | 2.136 (2) |
C8—O3 | 1.254 (4) | O6—H12 | 0.8500 |
C9—N2 | 1.330 (4) | O6—H11 | 0.8501 |
C9—C10 | 1.397 (6) | Zn1—O3i | 2.098 (2) |
C9—H7 | 0.9300 | Zn1—O6i | 2.136 (2) |
C10—C11 | 1.379 (5) | Zn1—N3iii | 2.217 (5) |
C10—H8 | 0.9300 | ||
C6—C1—C2 | 121.6 (3) | C13—C12—C11 | 121.3 (3) |
C6—C1—S2 | 118.3 (3) | C14—C13—C12 | 119.6 (4) |
C2—C1—S2 | 120.0 (3) | C14—C13—H9 | 120.2 |
C3—C2—C1 | 119.2 (4) | C12—C13—H9 | 120.2 |
C3—C2—H1 | 120.4 | N3—C14—C13 | 122.7 (4) |
C1—C2—H1 | 120.4 | N3—C14—H10 | 118.6 |
C2—C3—C4 | 118.5 (3) | C13—C14—H10 | 118.6 |
C2—C3—H2 | 120.7 | O4—N1—O5 | 122.0 (4) |
C4—C3—H2 | 120.7 | O4—N1—C4 | 120.3 (4) |
C3—C4—C5 | 123.3 (3) | O5—N1—C4 | 117.7 (4) |
C3—C4—N1 | 118.5 (4) | C9—N2—C9i | 117.5 (5) |
C5—C4—N1 | 118.1 (3) | C9—N2—Zn1 | 121.3 (2) |
C4—C5—C6 | 117.7 (3) | C9i—N2—Zn1 | 121.3 (2) |
C4—C5—H3 | 121.1 | C14—N3—C14i | 117.9 (5) |
C6—C5—H3 | 121.1 | C14—N3—Zn1ii | 121.0 (3) |
C1—C6—C5 | 119.6 (4) | C14i—N3—Zn1ii | 121.0 (3) |
C1—C6—H4 | 120.2 | C8—O3—Zn1 | 127.2 (2) |
C5—C6—H4 | 120.2 | Zn1—O6—H12 | 113.9 |
C8—C7—S2 | 109.2 (2) | Zn1—O6—H11 | 100.0 |
C8—C7—H5 | 109.8 | H12—O6—H11 | 117.0 |
S2—C7—H5 | 109.8 | O1—S2—C1 | 105.68 (17) |
C8—C7—H6 | 109.8 | O1—S2—C7 | 105.22 (18) |
S2—C7—H6 | 109.8 | C1—S2—C7 | 96.11 (15) |
H5—C7—H6 | 108.3 | O3—Zn1—O3i | 174.79 (15) |
O2—C8—O3 | 127.3 (3) | O3—Zn1—O6i | 90.57 (9) |
O2—C8—C7 | 117.3 (3) | O3i—Zn1—O6i | 89.50 (9) |
O3—C8—C7 | 115.4 (3) | O3—Zn1—O6 | 89.50 (9) |
N2—C9—C10 | 122.9 (4) | O3i—Zn1—O6 | 90.57 (9) |
N2—C9—H7 | 118.5 | O6i—Zn1—O6 | 178.29 (15) |
C10—C9—H7 | 118.5 | O3—Zn1—N2 | 87.39 (7) |
C11—C10—C9 | 119.5 (4) | O3i—Zn1—N2 | 87.39 (7) |
C11—C10—H8 | 120.3 | O6i—Zn1—N2 | 90.86 (7) |
C9—C10—H8 | 120.3 | O6—Zn1—N2 | 90.86 (7) |
C10i—C11—C10 | 117.6 (5) | O3—Zn1—N3iii | 92.61 (7) |
C10i—C11—C12 | 121.2 (3) | O3i—Zn1—N3iii | 92.61 (7) |
C10—C11—C12 | 121.2 (3) | O6i—Zn1—N3iii | 89.14 (7) |
C13i—C12—C13 | 117.4 (5) | O6—Zn1—N3iii | 89.14 (7) |
C13i—C12—C11 | 121.3 (3) | N2—Zn1—N3iii | 180.000 (3) |
Symmetry codes: (i) −x, −y+2, z; (ii) x, y, z+1; (iii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H12···O1iv | 0.85 | 1.88 | 2.731 (4) | 176 |
O6—H11···O2i | 0.85 | 1.83 | 2.655 (4) | 162 |
Symmetry codes: (i) −x, −y+2, z; (iv) x+1/4, −y+7/4, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C8H6NO5S)2(C10H8N2)(H2O)2] |
Mr | 713.98 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 293 |
a, b, c (Å) | 20.079 (4), 25.646 (5), 11.485 (2) |
V (Å3) | 5914 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.28 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Rigaku RAXIS-RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.761, 0.822 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14073, 3335, 3138 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.077, 1.07 |
No. of reflections | 3335 |
No. of parameters | 206 |
No. of restraints | 13 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.32 |
Absolute structure | Flack (1983) |
Absolute structure parameter | 0.022 (14) |
Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97.
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H12···O1i | 0.85 | 1.88 | 2.731 (4) | 175.7 |
O6—H11···O2ii | 0.85 | 1.83 | 2.655 (4) | 162.2 |
Symmetry codes: (i) x+1/4, −y+7/4, z−1/4; (ii) −x, −y+2, z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
4,4'-Bipyridine and organic aromatic carboxylic acid ligands are often used in syntheses to bridge metal atoms and these compound can demonstrate fascinating network topologies and potential application in the field of host–guest chemistry, ion exchange and catalysis (Ghosh et al., 2005). Simple carboxylic acids containing the 4-nitrophenyl group exhibit a variety of supramolecular aggregation patterns (Glidewell et al., 2002). Recently, our attention has been focused on 4-nitrophenylsulfinyl acetic acid, whose crystal structure has been reported previously (Glidewell et al., 2003).
Complex(I) consists of linear chains formed through 4,4'-bipy ligands linking six-coordinate ZnII ions (Fig. 1). The ZnII ion has slightly distorted octahedral geometry. Two N donors of two 4,4'-bipy ligands and two coordinated water molecules lie in the equatorial plane, while two O-atom donors of two (4-nitrophenylsulfinyl)acetate ligands are in the axial positions.
These one-dimensional chains are connected into a three dimensional network via intermolecular O—H···O hydrogen bonds(Table 1),(Fig. 2).