Buy article online - an online subscription or single-article purchase is required to access this article.
Single crystals of trimanganese(II) hexaoxotellurate(VI), Mn
3TeO
6, were grown by chemical transport reactions. Its structure is isotypic with Mg
3TeO
6 and can be derived from close packing of strongly distorted hexagonal oxygen layers parallel to (001), with Mn and two distinct Te atoms in the octahedral interstices. The TeO
6 octahedra are very regular, with
symmetry, whereas the MnO
6 octahedra are considerably distorted.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (n-O) = 0.002 Å
- R factor = 0.014
- wR factor = 0.035
- Data-to-parameter ratio = 16.9
checkCIF/PLATON results
No syntax errors found
Alert level C
CRYSC01_ALERT_1_C The word below has not been recognised as a standard
identifier.
amber
CRYSC01_ALERT_1_C No recognised colour has been given for crystal colour.
PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99
Alert level G
PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
3 ALERT level C = Check and explain
2 ALERT level G = General alerts; check
4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: coordinates taken from an isotypic compound; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.
Trimanganese(II) hexaoxotellurate(VI)
top
Crystal data top
Mn3TeO6 | Dx = 5.325 Mg m−3 |
Mr = 388.42 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 2116 reflections |
Hall symbol: -R 3 | θ = 4.6–32.0° |
a = 8.8673 (10) Å | µ = 13.55 mm−1 |
c = 10.6729 (12) Å | T = 293 K |
V = 726.77 (14) Å3 | Plate, amber |
Z = 6 | 0.09 × 0.06 × 0.02 mm |
F(000) = 1050 | |
Data collection top
Bruker SMART APEX CCD diffractometer | 558 independent reflections |
Radiation source: fine-focus sealed tube | 541 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 32.0°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −13→12 |
Tmin = 0.375, Tmax = 0.773 | k = −13→13 |
3003 measured reflections | l = −15→15 |
Refinement top
Refinement on F2 | Primary atom site location: isomorphous structure methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0163P)2 + 0.5015P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.014 | (Δ/σ)max = 0.001 |
wR(F2) = 0.035 | Δρmax = 0.59 e Å−3 |
S = 1.18 | Δρmin = −1.06 e Å−3 |
558 reflections | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
33 parameters | Extinction coefficient: 0.0116 (3) |
0 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Mn | 0.03839 (3) | 0.26425 (3) | 0.21297 (2) | 0.00751 (9) | |
Te1 | 0.0000 | 0.0000 | 0.5000 | 0.00487 (9) | |
Te2 | 0.0000 | 0.0000 | 0.0000 | 0.00474 (9) | |
O1 | 0.03069 (16) | 0.19625 (17) | 0.40283 (12) | 0.0089 (2) | |
O2 | 0.18277 (17) | 0.15620 (16) | 0.11053 (12) | 0.0079 (2) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mn | 0.00712 (13) | 0.00795 (13) | 0.00764 (14) | 0.00390 (10) | −0.00030 (8) | −0.00079 (8) |
Te1 | 0.00479 (10) | 0.00479 (10) | 0.00502 (13) | 0.00240 (5) | 0.000 | 0.000 |
Te2 | 0.00470 (10) | 0.00470 (10) | 0.00483 (13) | 0.00235 (5) | 0.000 | 0.000 |
O1 | 0.0108 (6) | 0.0078 (5) | 0.0079 (6) | 0.0045 (4) | −0.0003 (5) | 0.0020 (4) |
O2 | 0.0068 (5) | 0.0070 (5) | 0.0085 (6) | 0.0024 (5) | −0.0020 (4) | −0.0014 (4) |
Geometric parameters (Å, º) top
Mn—O1 | 2.1055 (14) | Te1—Mnii | 3.2380 (4) |
Mn—O2i | 2.1275 (13) | Te1—Mnxiii | 3.2381 (4) |
Mn—O1ii | 2.2009 (13) | Te1—Mnxiv | 3.2381 (4) |
Mn—O2iii | 2.2311 (12) | Te2—O2 | 1.9214 (12) |
Mn—O2 | 2.2313 (13) | Te2—O2xv | 1.9214 (12) |
Mn—O1iv | 2.3841 (13) | Te2—O2vii | 1.9214 (12) |
Mn—Te2 | 3.1584 (4) | Te2—O2xvi | 1.9214 (12) |
Mn—Te1v | 3.2380 (4) | Te2—O2xvii | 1.9214 (12) |
Mn—Mnii | 3.2388 (6) | Te2—O2iii | 1.9214 (12) |
Te1—O1vi | 1.9247 (13) | Te2—Mnxv | 3.1584 (4) |
Te1—O1iii | 1.9247 (13) | Te2—Mnvii | 3.1584 (4) |
Te1—O1vii | 1.9247 (13) | Te2—Mnxvi | 3.1584 (4) |
Te1—O1 | 1.9247 (13) | Te2—Mnxvii | 3.1584 (4) |
Te1—O1viii | 1.9247 (13) | Te2—Mniii | 3.1584 (4) |
Te1—O1ix | 1.9247 (13) | O1—Mnii | 2.2009 (13) |
Te1—Mnx | 3.2380 (4) | O1—Mnxiii | 2.3841 (13) |
Te1—Mnxi | 3.2380 (4) | O2—Mnxviii | 2.1274 (13) |
Te1—Mnxii | 3.2380 (4) | O2—Mnvii | 2.2311 (12) |
| | | |
O1—Mn—O2i | 95.73 (5) | O1viii—Te1—O1ix | 93.70 (5) |
O1—Mn—O1ii | 82.48 (5) | O2—Te2—O2xv | 180.00 (6) |
O2i—Mn—O1ii | 121.22 (5) | O2—Te2—O2vii | 86.25 (6) |
O1—Mn—O2iii | 107.58 (5) | O2xv—Te2—O2vii | 93.75 (6) |
O2i—Mn—O2iii | 81.52 (5) | O2—Te2—O2xvi | 93.75 (6) |
O1ii—Mn—O2iii | 154.80 (5) | O2xv—Te2—O2xvi | 86.25 (6) |
O1—Mn—O2 | 106.98 (5) | O2vii—Te2—O2xvi | 180.00 (9) |
O2i—Mn—O2 | 149.25 (3) | O2—Te2—O2xvii | 93.75 (6) |
O1ii—Mn—O2 | 82.90 (5) | O2xv—Te2—O2xvii | 86.25 (6) |
O2iii—Mn—O2 | 72.13 (7) | O2vii—Te2—O2xvii | 93.75 (6) |
O1—Mn—O1iv | 144.64 (5) | O2xvi—Te2—O2xvii | 86.25 (6) |
O2i—Mn—O1iv | 80.92 (4) | O2—Te2—O2iii | 86.25 (6) |
O1ii—Mn—O1iv | 69.96 (6) | O2xv—Te2—O2iii | 93.75 (6) |
O2iii—Mn—O1iv | 106.70 (4) | O2vii—Te2—O2iii | 86.25 (6) |
O2—Mn—O1iv | 91.54 (5) | O2xvi—Te2—O2iii | 93.75 (6) |
O1vi—Te1—O1iii | 180.0 | O2xvii—Te2—O2iii | 180.00 (8) |
O1vi—Te1—O1vii | 86.30 (5) | Te1—O1—Mn | 138.35 (7) |
O1iii—Te1—O1vii | 93.70 (5) | Te1—O1—Mnii | 103.21 (6) |
O1vi—Te1—O1 | 86.30 (5) | Mn—O1—Mnii | 97.52 (5) |
O1iii—Te1—O1 | 93.70 (5) | Te1—O1—Mnxiii | 96.86 (5) |
O1vii—Te1—O1 | 93.70 (5) | Mn—O1—Mnxiii | 117.52 (6) |
O1vi—Te1—O1viii | 93.70 (5) | Mnii—O1—Mnxiii | 93.77 (5) |
O1iii—Te1—O1viii | 86.30 (5) | Te2—O2—Mnxviii | 144.93 (7) |
O1vii—Te1—O1viii | 86.30 (5) | Te2—O2—Mnvii | 98.76 (5) |
O1—Te1—O1viii | 180.00 (5) | Mnxviii—O2—Mnvii | 98.48 (5) |
O1vi—Te1—O1ix | 93.70 (5) | Te2—O2—Mn | 98.75 (5) |
O1iii—Te1—O1ix | 86.30 (5) | Mnxviii—O2—Mn | 100.39 (5) |
O1vii—Te1—O1ix | 180.00 (7) | Mnvii—O2—Mn | 116.67 (6) |
O1—Te1—O1ix | 86.30 (5) | | |
Symmetry codes: (i) y−1/3, −x+y+1/3, −z+1/3; (ii) −x+1/3, −y+2/3, −z+2/3; (iii) −y, x−y, z; (iv) −y+1/3, x−y+2/3, z−1/3; (v) x+1/3, y+2/3, z−1/3; (vi) y, −x+y, −z+1; (vii) −x+y, −x, z; (viii) −x, −y, −z+1; (ix) x−y, x, −z+1; (x) y−2/3, −x+y−1/3, −z+2/3; (xi) −y+2/3, x−y+1/3, z+1/3; (xii) x−1/3, y−2/3, z+1/3; (xiii) −x+y−1/3, −x+1/3, z+1/3; (xiv) x−y+1/3, x−1/3, −z+2/3; (xv) −x, −y, −z; (xvi) x−y, x, −z; (xvii) y, −x+y, −z; (xviii) x−y+2/3, x+1/3, −z+1/3. |
Structural data of (M, M')2+3TeO6 compounds (Å, °),
and average Te—O distances (Å) topM,M'2+ | space group | a | b | c | β | ¯d(Te–O) |
Mga | R3 | 8.615 (3) | | 10.315 (3) | | 1.913 |
Mnb | R3 | 8.8673 (10) | | 10.6729 (12) | | 1.923 |
Mn,Cuc | R3 | 8.826 (1) | | 10.687 (2) | | 1.921 |
Nid | R3 | 5.1087 (8) | | 13.767 (2) | | 1.940 |
Cu,Zne | Ia3 | 9.537 (1) | | | | 1.933 |
Cu,Cof | Ia3 | 9.5702 (5) | | | | 1.932 |
Cu,Nig | Ia3 | 9.5464 (6) | | | | 1.934 |
Cuh | Ia3 | 9.5565 (5) | | | | 1.921 |
Coi | C2/c | 14.8167 (18) | 8.8509 (11) | 10.3631 (14) | 94.90 (1) | 1.932 |
Znj | C2/c | 14.8898 (8) | 8.8341 (5) | 10.3457 (5) | 92.990 (1) | 1.922 |
Cu,Znk | C2/c | 14.834 (2) | 8.801 (1) | 10.375 (2) | 93.27 (2) | 1.918 |
Cal | P21/n | 5.5782 (8) | 5.7998 (9) | 8.017 (1) | 90.217 (5) | 1.924 |
Cdl | P21/n | 5.4986 (3) | 5.6383 (3) | 8.0191 (5) | 90.00 (5) | 1.925 |
Hgm | Ia3 | 13.3808 (6) | | | | 1.942 |
Notes:
(a) Schulz & Bayer, 1971;
(b) Weil, 2006;
(c) metal ratio: Mn2.4,Cu0.6; Wulff et al., 1998;
(d) Becker & Berger, 2006;
(e) metal ratio: Cu1.5,Zn1.5; Wulff & Müller-Buschbaum, 1998;
(f) metal ratio: Cu1.5,Co1.5; Wulff & Müller-Buschbaum, 1998;
(g) metal ratio: Cu2Ni1; Wedel et al., 2001:
(h) Falck et al., 1978;
(i) Becker et al., 2006;
(j) this work;
(k) metal ratio: Cu1.667,Zn1.333; Wulff & Müller-Buschbaum, 1998;
(l) Burckhardt et al., 1982:
(m) Weil, 2003. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.