Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
4,4′-Bipyridin-1,1′-ium dichloride [C10H10Cl2N2 (I)] and 4,4′-bipyridin-1,1′-ium dinitrate [C10H10N4O6 (II)] have been prepared and the crystal structures determined at 90.0 (2) K. Molecules of (I) are linked by two chlorine-bridged, three-centered N—H...Cl hydrogen bonds into chains along the b axis. The chains are coupled by weak C—H...Cl interactions into a molecular ladder along the c direction. In (II) each nitrate is coordinated to four bipyridinium ions through the interplay of the N—H...O and C—H...O contacts, resulting in a three-dimensional zigzag sheet on the ab plane. The sheets stack along the c axis. In 4,4′-bipyridin-1-ium bromide monohydrate [C10H9N2+·Br·H2O (III)] the bipyridinium ions are linked by three-center N—H...N′ hydrogen bonds in a head-to-tail fashion to form chains along the b axis. The chains are linked by C—H...Br and C—H...OH2 into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768103011212/na5002sup1.cif
Contains datablocks dichloride, dinitrate

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011212/na5002Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011212/na5002IIsup3.hkl
Contains datablock II

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011212/na5002Isup4.fcf
Contains datablock I

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011212/na5002IIsup5.fcf
Contains datablock II

CCDC references: 223331; 223332

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
(dichloride) top
Crystal data top
C10H10Cl2N2F(000) = 472
Mr = 229.10Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.663 (1) ÅCell parameters from 1163 reflections
b = 12.098 (1) Åθ = 1.0–27.5°
c = 7.033 (1) ŵ = 0.61 mm1
β = 112.600 (1)°T = 90 K
V = 994.70 (18) Å3Irregular shard, colourless
Z = 40.50 × 0.25 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
1135 independent reflections
Radiation source: fine-focus sealed tube959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 18 pixels mm-1θmax = 27.4°, θmin = 2.4°
ω scans at fixed χ = 55°h = 1616
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.750, Tmax = 0.925l = 99
2173 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0239P)2 + 1.1028P]
where P = (Fo2 + 2Fc2)/3
1135 reflections(Δ/σ)max < 0.001
66 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H10Cl2N2V = 994.70 (18) Å3
Mr = 229.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.663 (1) ŵ = 0.61 mm1
b = 12.098 (1) ÅT = 90 K
c = 7.033 (1) Å0.50 × 0.25 × 0.13 mm
β = 112.600 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1135 independent reflections
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
959 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.925Rint = 0.021
2173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
1135 reflectionsΔρmin = 0.24 e Å3
66 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.34857 (3)0.13826 (3)0.22822 (5)0.01348 (12)
N10.50000.35053 (14)0.25000.0129 (4)
H10.50000.27780.25000.015*
N20.50000.92602 (14)0.25000.0124 (4)
H20.50000.99880.25000.015*
C10.39952 (13)0.40378 (13)0.1891 (2)0.0147 (3)
H1A0.33010.36310.14690.018*
C20.39733 (13)0.51780 (12)0.1879 (2)0.0136 (3)
H2A0.32640.55600.14520.016*
C30.50000.57700 (17)0.25000.0112 (4)
C40.50000.70026 (17)0.25000.0109 (4)
C50.58993 (13)0.75872 (12)0.2293 (2)0.0132 (3)
H50.65240.72050.21640.016*
C60.58712 (13)0.87245 (12)0.2277 (2)0.0140 (3)
H60.64710.91310.21070.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.01123 (19)0.01032 (19)0.0191 (2)0.00051 (14)0.00612 (14)0.00090 (14)
N10.0175 (9)0.0073 (9)0.0132 (9)0.0000.0053 (7)0.000
N20.0177 (9)0.0058 (9)0.0136 (9)0.0000.0058 (7)0.000
C10.0146 (8)0.0135 (8)0.0153 (7)0.0028 (6)0.0051 (6)0.0005 (6)
C20.0122 (7)0.0137 (8)0.0152 (7)0.0013 (6)0.0055 (6)0.0015 (6)
C30.0143 (10)0.0102 (11)0.0100 (9)0.0000.0057 (8)0.000
C40.0121 (10)0.0101 (10)0.0097 (9)0.0000.0032 (8)0.000
C50.0119 (8)0.0126 (8)0.0157 (7)0.0005 (6)0.0059 (6)0.0007 (6)
C60.0146 (8)0.0132 (8)0.0152 (7)0.0025 (6)0.0069 (6)0.0009 (6)
Geometric parameters (Å, º) top
N1—C11.3412 (18)C2—H2A0.9500
N1—C1i1.3412 (18)C3—C2i1.3991 (18)
N1—H10.8800C3—C41.491 (3)
N2—C61.3397 (17)C4—C51.3949 (18)
N2—C6i1.3398 (17)C4—C5i1.3950 (18)
N2—H20.8800C5—C61.376 (2)
C1—C21.380 (2)C5—H50.9500
C1—H1A0.9500C6—H60.9500
C2—C31.3991 (18)
C1—N1—C1i122.58 (19)C2i—C3—C2118.42 (19)
C1—N1—H1118.7C2i—C3—C4120.79 (10)
C1i—N1—H1118.7C2—C3—C4120.79 (10)
C6—N2—C6i122.14 (18)C5—C4—C5i119.07 (19)
C6—N2—H2118.9C5—C4—C3120.47 (10)
C6i—N2—H2118.9C5i—C4—C3120.46 (10)
N1—C1—C2119.77 (15)C6—C5—C4119.22 (15)
N1—C1—H1A120.1C6—C5—H5120.4
C2—C1—H1A120.1C4—C5—H5120.4
C1—C2—C3119.72 (15)N2—C6—C5120.17 (14)
C1—C2—H2A120.1N2—C6—H6119.9
C3—C2—H2A120.1C5—C6—H6119.9
C1i—N1—C1—C20.06 (10)C2i—C3—C4—C5i153.99 (10)
N1—C1—C2—C30.1 (2)C2—C3—C4—C5i26.01 (10)
C1—C2—C3—C2i0.06 (10)C5i—C4—C5—C60.66 (10)
C1—C2—C3—C4179.94 (10)C3—C4—C5—C6179.34 (10)
C2i—C3—C4—C526.01 (10)C6i—N2—C6—C50.68 (10)
C2—C3—C4—C5153.99 (10)C4—C5—C6—N21.3 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl0.882.523.173132.17
N1—H1···Cl0.882.523.173132.17
N2—H2···Cl0.882.513.173132.15
N2—H2···Cl0.882.513.173132.15
(dinitrate) top
Crystal data top
C10H10N4O6Dx = 1.625 Mg m3
Mr = 282.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 3415 reflections
a = 27.4380 (16) Åθ = 1.0–27.5°
b = 23.4310 (12) ŵ = 0.14 mm1
c = 3.5877 (2) ÅT = 90 K
V = 2306.5 (2) Å3Block, colourless
Z = 80.35 × 0.22 × 0.22 mm
F(000) = 1168
Data collection top
Nonius KappaCCD
diffractometer
969 independent reflections
Radiation source: fine-focus sealed tube910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scans at fixed χ = 55°h = 3232
Absorption correction: SCALEPACK
Otwinowski & Minor, 1997)
k = 2427
Tmin = 0.954, Tmax = 0.971l = 34
2901 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.7936P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.17 e Å3
969 reflectionsΔρmin = 0.17 e Å3
92 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0021 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 1.1 (15)
Crystal data top
C10H10N4O6V = 2306.5 (2) Å3
Mr = 282.22Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 27.4380 (16) ŵ = 0.14 mm1
b = 23.4310 (12) ÅT = 90 K
c = 3.5877 (2) Å0.35 × 0.22 × 0.22 mm
Data collection top
Nonius KappaCCD
diffractometer
969 independent reflections
Absorption correction: SCALEPACK
Otwinowski & Minor, 1997)
910 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.971Rint = 0.026
2901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.17 e Å3
S = 1.11Δρmin = 0.17 e Å3
969 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
92 parametersAbsolute structure parameter: 1.1 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The absolute structure is NOT determined by the quoted Flack parameter

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24593 (6)0.21849 (7)0.3622 (5)0.0131 (4)
C20.28269 (6)0.18137 (7)0.4737 (5)0.0147 (4)
H20.31380.19570.54260.018*
C30.27359 (6)0.12345 (8)0.4835 (5)0.0157 (4)
H30.29820.09770.56320.019*
N40.22977 (5)0.10379 (6)0.3797 (5)0.0169 (4)
H40.22440.06680.38790.020*
C50.19384 (6)0.13830 (8)0.2640 (5)0.0167 (4)
H50.16350.12260.18790.020*
C60.20076 (6)0.19635 (8)0.2552 (6)0.0152 (4)
H60.17520.22100.17770.018*
N1A0.16244 (5)0.01299 (6)0.5158 (4)0.0152 (4)
O1A0.20540 (4)0.00721 (5)0.3875 (4)0.0202 (4)
O2A0.14410 (4)0.06162 (5)0.5236 (4)0.0206 (3)
O3A0.13986 (5)0.02977 (5)0.6319 (4)0.0220 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (9)0.0162 (9)0.0096 (9)0.0001 (7)0.0036 (8)0.0005 (7)
C20.0131 (9)0.0179 (9)0.0131 (10)0.0002 (7)0.0004 (7)0.0005 (8)
C30.0151 (9)0.0173 (9)0.0148 (10)0.0034 (8)0.0031 (8)0.0011 (8)
N40.0202 (8)0.0119 (7)0.0187 (8)0.0007 (6)0.0029 (7)0.0004 (6)
C50.0145 (9)0.0201 (10)0.0155 (11)0.0022 (8)0.0013 (8)0.0007 (9)
C60.0151 (9)0.0164 (9)0.0141 (10)0.0011 (7)0.0019 (8)0.0004 (8)
N1A0.0135 (8)0.0178 (8)0.0143 (9)0.0004 (7)0.0020 (7)0.0000 (7)
O1A0.0128 (6)0.0182 (7)0.0295 (8)0.0015 (5)0.0066 (6)0.0022 (6)
O2A0.0186 (6)0.0153 (6)0.0279 (8)0.0055 (6)0.0025 (6)0.0005 (6)
O3A0.0194 (6)0.0176 (7)0.0289 (9)0.0062 (6)0.0037 (6)0.0030 (6)
Geometric parameters (Å, º) top
C1—C21.391 (2)N4—H40.8800
C1—C61.397 (2)C5—C61.374 (2)
C1—C1i1.493 (3)C5—H50.9500
C2—C31.380 (3)C6—H60.9500
C2—H20.9500N1A—O2A1.2459 (18)
C3—N41.340 (2)N1A—O3A1.2494 (19)
C3—H30.9500N1A—O1A1.2727 (19)
N4—C51.341 (2)
C2—C1—C6119.34 (16)C5—N4—H4118.7
C2—C1—C1i120.67 (17)N4—C5—C6120.18 (15)
C6—C1—C1i119.99 (18)N4—C5—H5119.9
C3—C2—C1119.42 (15)C6—C5—H5119.9
C3—C2—H2120.3C5—C6—C1118.94 (16)
C1—C2—H2120.3C5—C6—H6120.5
N4—C3—C2119.55 (16)C1—C6—H6120.5
N4—C3—H3120.2O2A—N1A—O3A121.71 (15)
C2—C3—H3120.2O2A—N1A—O1A118.64 (14)
C3—N4—C5122.56 (15)O3A—N1A—O1A119.65 (14)
C3—N4—H4118.7
C6—C1—C2—C31.2 (3)C3—N4—C5—C61.3 (3)
C1—C2—C3—N41.1 (3)N4—C5—C6—C11.1 (3)
C2—C3—N4—C50.2 (3)C2—C1—C6—C50.1 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···OlA0.881.812.686173
Yes—N4···H4N1A0.882.5673
N4—H4···O3A0.882.633.148119.02

Experimental details

(dichloride)(dinitrate)
Crystal data
Chemical formulaC10H10Cl2N2C10H10N4O6
Mr229.10282.22
Crystal system, space groupMonoclinic, C2/cOrthorhombic, Fdd2
Temperature (K)9090
a, b, c (Å)12.663 (1), 12.098 (1), 7.033 (1)27.4380 (16), 23.4310 (12), 3.5877 (2)
α, β, γ (°)90, 112.600 (1), 9090, 90, 90
V3)994.70 (18)2306.5 (2)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.610.14
Crystal size (mm)0.50 × 0.25 × 0.130.35 × 0.22 × 0.22
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SCALEPACK (Otwinowski & Minor, 1997)
SCALEPACK
Otwinowski & Minor, 1997)
Tmin, Tmax0.750, 0.9250.954, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2173, 1135, 959 2901, 969, 910
Rint0.0210.026
(sin θ/λ)max1)0.6470.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.05 0.027, 0.068, 1.11
No. of reflections1135969
No. of parameters6692
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.240.17, 0.17
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?1.1 (15)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in Siemens SHELXTL (Sheldrick, 1994), SHELX97-2 (Sheldrick, 1997) and local procedures.

Selected geometric parameters (Å, º) for (dichloride) top
N1—C11.3412 (18)C3—C41.491 (3)
N2—C61.3397 (17)C4—C51.3949 (18)
C1—C21.380 (2)C5—C61.376 (2)
C2—C31.3991 (18)
N1—C1—C2119.77 (15)C5—C4—C3120.47 (10)
C1—C2—C3119.72 (15)C6—C5—C4119.22 (15)
C2—C3—C4120.79 (10)N2—C6—C5120.17 (14)
C5i—C4—C5—C60.66 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (dichloride) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl.8802.5153.173132.17.
Selected geometric parameters (Å, º) for (dinitrate) top
C1—C21.391 (2)C5—C61.374 (2)
C1—C61.397 (2)N1A—O2A1.2459 (18)
C2—C31.380 (3)N1A—O3A1.2494 (19)
C3—N41.340 (2)N1A—O1A1.2727 (19)
N4—C51.341 (2)
C2—C1—C6119.34 (16)C5—C6—C1118.94 (16)
C3—C2—C1119.42 (15)O2A—N1A—O3A121.71 (15)
N4—C3—C2119.55 (16)O2A—N1A—O1A118.64 (14)
C3—N4—C5122.56 (15)O3A—N1A—O1A119.65 (14)
N4—C5—C6120.18 (15)
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds