Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
1,1,1,2,2-Penta­iodo­diphosphanium tetra­iodo­gallate(III), (P2I5)[GaI4], crystallizes in the orthorhombic space group Pbca. The structure is isotypic with (P2I5)[AlI4]. Short I...I interatomic distances indicate weak interactions between cations and anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800018419/na6005sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800018419/na6005Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](I-Ga) = 0.001 Å
  • R factor = 0.027
  • wR factor = 0.076
  • Data-to-parameter ratio = 28.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
THETM_01 Alert B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5723
Author response: Image plate distance was 80 mm because of the cell dimensions, so theta_max=24.2\%. The value of sine (theta_max) /wavelength could be more than 0.575.

0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The 2:1 adduct of PI3 and AlI3 was structurally characterized by X-ray crystallography and identified as (P2I5)[AlI4] (Pohl, 1983). Recently, the 1,1,1,2,2-pentaiododiphosphanium cation species (P2I5)[EI4] (E = Al, Ga, In) have been characterized by solid-state 31P MAS NMR and vibrational spectroscopy (Aubauer et al., 1999). The crystal structure of (P2I5)[GaI4] is isotypic with the structure found for (P2I5)[AlI4]. The P1—P2 bond distance is comparable with the P—P bond length of 2.218 (13) Å in (P2I5)[AlI4] (Pohl, 1983) and 2.230 (3) Å in P2I4 (Zak & Cernik, 1996). The P2I5+ cation displays a staggered configuration (Fig. 1), with an I1—P1—P2—I4 torsion angle of -52.3 (1)°. The P2—I4 and P2—I5 bond lengths of the PI2 unit are significantly longer than the P1—I1, P1—I2 and P1—I3 bond lengths found for the PI3 unit. The GaI4- unit has a slightly distorted tetrahedral geometry. The Ga—I bond distances range between 2.521 (1) and 2.577 (1) Å, and the I—Ga—I bond angles between 105.15 (4) and 112.18 (4)°, similar to the bond lenghts and angles found in (TeI3)[GaI4] (Schulz-Lang et al., 1998). Similar to (P2I5)[AlI4] (Pohl, 1983), the structure of (P2I5)[GaI4] shows weak interatomic I···I distances in the range 3.4002 (8)–3.9168 (8) Å between the P2I5+ and the GaI4- units (Fig. 2), which are significantly shorter than the sum of the van der Waals radii (ca 4.3 Å), indicating weak cation–anion interactions.

Experimental top

(P2I5)[GaI4] was prepared by the reaction of PI3 (0.84 g, 2.00 mmol) and GaI3 (0.45 g, 1.00 mmol) in CS2 (20 ml) at room temperature. The solvent was slowly removed under static vacuum, yielding red crystals.

Computing details top

Data collection: IPDS Software Manual (Stoe, 1997); cell refinement: IPDS Software Manual; data reduction: IPDS Software Manual; program(s) used to solve structure: SIR97 (Cascarano et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997). SCHAKAL (Keller, 1995) and DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of (P2I5)[GaI4] showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram viewed down the a axis.
1,1,1,2,2-Pentaiododiphosphanium tetraiodogallate(III) top
Crystal data top
(P2I5)[GaI4]Orthorhombic P (as derived from metrics)
Mr = 1273.81Dx = 4.273 (1) Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5000 reflections
a = 10.7960 (5) Åθ = 2.4–24.0°
b = 18.1687 (8) ŵ = 15.55 mm1
c = 20.1886 (10) ÅT = 200 K
V = 3960.0 (3) Å3Irregular, red
Z = 80.19 × 0.12 × 0.10 mm
F(000) = 4304
Data collection top
Stoe IPDS
diffractometer
3094 independent reflections
Radiation source: fine-focus sealed tube2570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
area detection scansθmax = 24.0°, θmin = 2.4°
Absorption correction: numerical
crystal faces optimized with Stoe X-SHAPE (Stoe, 1997) then a numerical absorption correction with X-RED (revision 1.09; Stoe, 1997)
h = 1212
Tmin = 0.194, Tmax = 0.395k = 1620
10907 measured reflectionsl = 1923
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.027Secondary atom site location: difference Fourier map
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
3094 reflectionsΔρmax = 1.38 (0.82 Å from I3) e Å3
109 parametersΔρmin = 1.23 (0.90 Å from I3) e Å3
Crystal data top
(P2I5)[GaI4]V = 3960.0 (3) Å3
Mr = 1273.81Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7960 (5) ŵ = 15.55 mm1
b = 18.1687 (8) ÅT = 200 K
c = 20.1886 (10) Å0.19 × 0.12 × 0.10 mm
Data collection top
Stoe IPDS
diffractometer
3094 independent reflections
Absorption correction: numerical
crystal faces optimized with Stoe X-SHAPE (Stoe, 1997) then a numerical absorption correction with X-RED (revision 1.09; Stoe, 1997)
2570 reflections with I > 2σ(I)
Tmin = 0.194, Tmax = 0.395Rint = 0.097
10907 measured reflectionsθmax = 24.0°
Refinement top
R[F2 > 2σ(F2)] = 0.027109 parameters
wR(F2) = 0.0760 restraints
S = 0.96Δρmax = 1.38 (0.82 Å from I3) e Å3
3094 reflectionsΔρmin = 1.23 (0.90 Å from I3) e Å3
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga0.13672 (8)0.21858 (5)0.11901 (4)0.0215 (2)
I60.00354 (5)0.20184 (3)0.21770 (3)0.03203 (16)
I70.29375 (5)0.11255 (3)0.10729 (3)0.02884 (16)
I80.01101 (6)0.22888 (3)0.01348 (3)0.03364 (16)
I90.26802 (5)0.33435 (3)0.13418 (3)0.02882 (16)
P10.8024 (2)0.49494 (11)0.12882 (11)0.0224 (5)
P20.6664 (2)0.42147 (12)0.07874 (11)0.0239 (5)
I10.75379 (5)0.53586 (3)0.23890 (3)0.03010 (16)
I20.99534 (5)0.42794 (3)0.13111 (3)0.03039 (16)
I30.82519 (6)0.60032 (4)0.05889 (4)0.0455 (2)
I40.65420 (6)0.33280 (3)0.16800 (3)0.03460 (17)
I50.48824 (5)0.50114 (3)0.09895 (3)0.03056 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga0.0243 (5)0.0210 (4)0.0193 (5)0.0012 (4)0.0003 (4)0.0014 (4)
I60.0364 (3)0.0306 (3)0.0291 (3)0.0061 (3)0.0121 (3)0.0023 (3)
I70.0291 (3)0.0288 (3)0.0286 (3)0.0093 (2)0.0024 (2)0.0051 (3)
I80.0420 (4)0.0345 (3)0.0245 (3)0.0055 (3)0.0107 (3)0.0008 (3)
I90.0227 (3)0.0270 (3)0.0368 (3)0.0035 (2)0.0042 (3)0.0007 (3)
P10.0243 (11)0.0216 (11)0.0213 (11)0.0011 (8)0.0014 (9)0.0023 (10)
P20.0293 (11)0.0270 (11)0.0154 (10)0.0014 (9)0.0003 (9)0.0029 (10)
I10.0358 (3)0.0307 (3)0.0238 (3)0.0023 (2)0.0058 (3)0.0072 (3)
I20.0254 (3)0.0246 (3)0.0412 (4)0.0018 (2)0.0021 (3)0.0007 (3)
I30.0445 (4)0.0377 (4)0.0543 (5)0.0032 (3)0.0106 (3)0.0234 (3)
I40.0455 (4)0.0274 (3)0.0309 (3)0.0066 (3)0.0070 (3)0.0077 (3)
I50.0276 (3)0.0322 (3)0.0319 (3)0.0000 (2)0.0019 (2)0.0023 (3)
Geometric parameters (Å, º) top
Ga—I62.5210 (10)P1—I32.391 (2)
Ga—I82.5330 (10)P1—I12.401 (2)
Ga—I92.5549 (10)P1—I22.413 (2)
Ga—I72.5771 (10)P2—I42.421 (2)
P1—P22.227 (3)P2—I52.442 (2)
I1···I7i3.4420 (9)I4···I6iii3.7264 (8)
I2···I9ii3.4002 (8)I5···I7iv3.6598 (8)
I6—Ga—I8110.60 (4)I3—P1—I1108.72 (8)
I6—Ga—I9109.75 (4)P2—P1—I2105.98 (10)
I8—Ga—I9109.71 (4)I3—P1—I2109.04 (9)
I6—Ga—I7112.18 (4)I1—P1—I2109.09 (9)
I8—Ga—I7109.30 (4)P1—P2—I495.56 (10)
I9—Ga—I7105.15 (4)P1—P2—I595.05 (10)
P2—P1—I3106.25 (11)I4—P2—I5103.13 (9)
P2—P1—I1117.50 (11)
I3—P1—P2—I4174.24 (8)I3—P1—P2—I570.48 (10)
I1—P1—P2—I452.33 (12)I1—P1—P2—I551.43 (12)
I2—P1—P2—I469.85 (10)I2—P1—P2—I5173.61 (8)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(P2I5)[GaI4]
Mr1273.81
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)10.7960 (5), 18.1687 (8), 20.1886 (10)
V3)3960.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)15.55
Crystal size (mm)0.19 × 0.12 × 0.10
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
crystal faces optimized with Stoe X-SHAPE (Stoe, 1997) then a numerical absorption correction with X-RED (revision 1.09; Stoe, 1997)
Tmin, Tmax0.194, 0.395
No. of measured, independent and
observed [I > 2σ(I)] reflections
10907, 3094, 2570
Rint0.097
θmax (°)24.0
(sin θ/λ)max1)0.572
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 0.96
No. of reflections3094
No. of parameters109
Δρmax, Δρmin (e Å3)1.38 (0.82 Å from I3), 1.23 (0.90 Å from I3)

Computer programs: IPDS Software Manual (Stoe, 1997), IPDS Software Manual, SIR97 (Cascarano et al., 1996), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997). SCHAKAL (Keller, 1995) and DIAMOND (Bergerhoff, 1996), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ga—I62.5210 (10)P1—I32.391 (2)
Ga—I82.5330 (10)P1—I12.401 (2)
Ga—I92.5549 (10)P1—I22.413 (2)
Ga—I72.5771 (10)P2—I42.421 (2)
P1—P22.227 (3)P2—I52.442 (2)
I1···I7i3.4420 (9)I4···I6iii3.7264 (8)
I2···I9ii3.4002 (8)I5···I7iv3.6598 (8)
I6—Ga—I8110.60 (4)I3—P1—I1108.72 (8)
I6—Ga—I9109.75 (4)P2—P1—I2105.98 (10)
I8—Ga—I9109.71 (4)I3—P1—I2109.04 (9)
I6—Ga—I7112.18 (4)I1—P1—I2109.09 (9)
I8—Ga—I7109.30 (4)P1—P2—I495.56 (10)
I9—Ga—I7105.15 (4)P1—P2—I595.05 (10)
P2—P1—I3106.25 (11)I4—P2—I5103.13 (9)
P2—P1—I1117.50 (11)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds