Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052427/ng2345sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052427/ng2345Isup2.hkl |
CCDC reference: 667229
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean (C-C) = 0.005 Å
- R factor = 0.024
- wR factor = 0.061
- Data-to-parameter ratio = 18.7
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.56 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C14 - C15 .. 6.20 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C15 - C16 .. 5.02 su
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _reflns_number_total 4825 Count of symmetry unique reflns 2762 Completeness (_total/calc) 174.69% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2063 Fraction of Friedel pairs measured 0.747 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
For background literature on the catalytic activity of rhodium–phosphine adducts, see Carraz et al. (2000); Moloy & Wegman (1989). Corresponding [Rh(acac)(CO)(PR1R2R3)] complexes, such as [Rh(acac)(CO)(PPh3)] (Leipoldt et al., 1978), [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and [Rh(acac)(CO)(PCy3)] (Trzeciak et al., 2004) have similar square-planar geometries. For related structures, see Marthinus Janse van Rensburg et al. (2006). For comparison of electronic parameters, see Otto & Roodt (2004).For a related palladium compound, see Meij et al. (2003). For the related Vaska-type compunds, see Otto et al. (2000); Roodt et al. (2003). For the synthesis of the starting dirhodium compound, see McCleverty & Wilkinson (1990).
[RhCl(CO)2]2 was prepared according to McCleverty and Wilkinson (1990). [Rh(acac)(CO)2] was synthesized by mixing a solution of acetylacetonate (85.0 mg, 0.849 mmol) in dimethylformamide (DMF) and [RhCl(CO)2]2 (121.5 mg, 0.313 mmol) in DMF. Upon addition of ice-water, the complex precipitated and was filtered off. Ligand substitution on the complex [Rh(acac)(CO)2] was performed by dissolving (80.0 mg, 0.310 mmol) in acetone followed by slow addition of PCyPh2 (95.5 mg, 0.356 mmol). Crystals of (I) were obtained by slow evaporation of the reaction mixture. Spectroscopic analysis: 31P{H} NMR (CDCl3, 121.495 MHz, p.p.m.): 53.3 [d, 1J(Rh—P) = 171.3 Hz]; IR υ(CO): 1971.2 cm-1; (CH2Cl2) υ(CO): 1959.3 cm-1.
The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.98Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl protons were located in a difference Fourier map and the group was refined as a rigid rotor. Residual electron density due to disorder resulted in large thermal vibrations on the periphery. Phenyl carbons, C31 to C36, were restrained as planar atoms. The anisotropic displacement parameters for C13 were restrained.
This work is part of an ongoing investigation aimed at determing the steric and electronic effects induced by various phosphine ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphine complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy et al., 1989). Symmetrical di-phosphine ligands result in the producton of acetaldehyde, whereas unsymmetrical di-phosphine ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). The title compound, [Rh(acac)(CO)(PCyPh2)] (Cy = cyclohexyl, Ph = phenyl), (Fig. 1), forms part of our study on complexes of the type [Rh(β-diketone)(CO)(PR1R2R3)] (R1, R2 and R3 = cyclohexyl or phenyl).
Slight distortion of the square-planar coordination sphere is observed as illustrated by a 5.04 (4)° deviation from the square plane. The Rh(I) atom deviates by 0.0596 (2) Å from the plane defined by the four coordinate atoms O2, O3, P1 and C1. The acetylacetonate ligand exhibits a bite angle of 88.72 (7)° and the C1—Rh—P1 bond angle is 88.51 (8)°. The carbonyl ligand is nearly linear (Rh1—C1—O1 = 179.2 (3)°). Intramolecular C—H···O interaction (Table 2) results in twisting of the the acetylacetonate backbone as indicated by the C2—O2—O3—C4 torsion angle (3.1 (2)°).
The steric demand of the cyclohexyldiphenyl phosphine ligand is quantified by the effective cone angle (θE), calculated using the actual Rh—P bond distance (Otto et al., 2000). The θE value of 151° agrees with the value determined by Meij et al. (2003) for the trans-[PdCl2(PCyPh2)2] complex (151 and 155°). The value of the effective cone angle of the title compound fits the sequence of 163° for [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and of 145 and 170° for the corresponding Vaska-type rhodium complexes trans- [Rh(CO)(Cl)(PPh3)2] and trans-[Rh(CO)(Cl)(PCy3)2] (Roodt et al., 2003). In Table 3, the title compound is compared with other closely related Rh(I) phosphine complexes from literature containing the acetylacetonate bidentate ligand.
For background literature on the catalytic activity of rhodium–phosphine adducts, see Carraz et al. (2000); Moloy & Wegman (1989). Corresponding [Rh(acac)(CO)(PR1R2R3)] complexes, such as [Rh(acac)(CO)(PPh3)] (Leipoldt et al., 1978), [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and [Rh(acac)(CO)(PCy3)] (Trzeciak et al., 2004) have similar square-planar geometries. For related structures, see Marthinus Janse van Rensburg et al. (2006). For comparison of electronic parameters, see Otto & Roodt (2004).For a related palladium compound, see Meij et al. (2003). For the related Vaska-type compunds, see Otto et al. (2000); Roodt et al. (2003). For the synthesis of the starting dirhodium compound, see McCleverty & Wilkinson (1990).
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
[Rh(C5H7O2)(C18H21P)(CO)] | F(000) = 1024 |
Mr = 498.34 | Dx = 1.485 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7313 reflections |
a = 9.4682 (5) Å | θ = 2.4–28.3° |
b = 12.7534 (6) Å | µ = 0.86 mm−1 |
c = 18.4602 (9) Å | T = 100 K |
V = 2229.10 (19) Å3 | Plate, yellow |
Z = 4 | 0.42 × 0.27 × 0.06 mm |
Bruker X8 APEXII 4K KappaCCD diffractometer | 4825 independent reflections |
Radiation source: sealed tube | 4672 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 512 pixels mm-1 | θmax = 27°, θmin = 2.2° |
ω and φ scans | h = −11→12 |
Absorption correction: multi-scan SADABS (Bruker, 2004) | k = −16→16 |
Tmin = 0.714, Tmax = 0.950 | l = −23→12 |
12624 measured reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0301P)2 + 1.123P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.024 | (Δ/σ)max = 0.001 |
wR(F2) = 0.061 | Δρmax = 0.56 e Å−3 |
S = 1.06 | Δρmin = −0.62 e Å−3 |
4825 reflections | Absolute structure: Flack (1983), 2064 Friedel pairs |
258 parameters | Absolute structure parameter: −0.02 (2) |
3 restraints |
[Rh(C5H7O2)(C18H21P)(CO)] | V = 2229.10 (19) Å3 |
Mr = 498.34 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.4682 (5) Å | µ = 0.86 mm−1 |
b = 12.7534 (6) Å | T = 100 K |
c = 18.4602 (9) Å | 0.42 × 0.27 × 0.06 mm |
Bruker X8 APEXII 4K KappaCCD diffractometer | 4825 independent reflections |
Absorption correction: multi-scan SADABS (Bruker, 2004) | 4672 reflections with I > 2σ(I) |
Tmin = 0.714, Tmax = 0.950 | Rint = 0.023 |
12624 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.061 | Δρmax = 0.56 e Å−3 |
S = 1.06 | Δρmin = −0.62 e Å−3 |
4825 reflections | Absolute structure: Flack (1983), 2064 Friedel pairs |
258 parameters | Absolute structure parameter: −0.02 (2) |
3 restraints |
Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 566 frames were collected with a frame width of 0.5° covering up to θ = 27.00° with 99.0% completeness accomplized. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2396 (3) | 0.5478 (2) | 0.07028 (15) | 0.0204 (6) | |
O1 | 0.3520 (2) | 0.56474 (19) | 0.04995 (13) | 0.0321 (5) | |
P1 | 0.07950 (8) | 0.66367 (5) | 0.17222 (3) | 0.01498 (14) | |
O2 | 0.0442 (2) | 0.38392 (14) | 0.04299 (9) | 0.0194 (4) | |
O3 | −0.1404 (2) | 0.50184 (14) | 0.13645 (10) | 0.0200 (4) | |
C2 | −0.0620 (4) | 0.32317 (19) | 0.04253 (13) | 0.0192 (5) | |
C4 | −0.2233 (3) | 0.4269 (2) | 0.11987 (14) | 0.0184 (6) | |
C3 | −0.1889 (3) | 0.3388 (2) | 0.07867 (14) | 0.0212 (6) | |
H3 | −0.258 | 0.2851 | 0.075 | 0.025* | |
C5 | −0.0467 (4) | 0.2258 (2) | −0.00365 (16) | 0.0288 (7) | |
H5A | −0.0188 | 0.2459 | −0.0529 | 0.043* | |
H5B | −0.1371 | 0.1884 | −0.0053 | 0.043* | |
H5C | 0.0257 | 0.1801 | 0.0173 | 0.043* | |
C6 | −0.3723 (3) | 0.4384 (3) | 0.14649 (17) | 0.0264 (7) | |
H6A | −0.3726 | 0.4778 | 0.1921 | 0.04* | |
H6B | −0.4133 | 0.3688 | 0.1545 | 0.04* | |
H6C | −0.4283 | 0.476 | 0.1102 | 0.04* | |
C31 | 0.1614 (4) | 0.7821 (2) | 0.13684 (15) | 0.0265 (7) | |
C21 | 0.1791 (3) | 0.6308 (2) | 0.25351 (14) | 0.0189 (6) | |
C11 | −0.0933 (3) | 0.7092 (3) | 0.20456 (16) | 0.0270 (7) | |
H11 | −0.1385 | 0.6428 | 0.2215 | 0.032* | |
C16 | −0.1869 (3) | 0.7417 (2) | 0.14486 (15) | 0.0236 (6) | |
H16A | −0.146 | 0.8046 | 0.1214 | 0.028* | |
H16B | −0.1894 | 0.685 | 0.1082 | 0.028* | |
C12 | −0.1011 (4) | 0.7767 (3) | 0.26998 (19) | 0.0344 (6) | |
H12A | −0.0491 | 0.7422 | 0.3099 | 0.041* | |
H12B | −0.0538 | 0.8442 | 0.2596 | 0.041* | |
C14 | −0.3460 (4) | 0.8275 (3) | 0.2347 (2) | 0.0372 (8) | |
H14A | −0.444 | 0.8203 | 0.2528 | 0.045* | |
H14B | −0.3308 | 0.9024 | 0.2229 | 0.045* | |
C15 | −0.3322 (4) | 0.7656 (3) | 0.1672 (2) | 0.0430 (9) | |
H15A | −0.3837 | 0.6987 | 0.1736 | 0.052* | |
H15B | −0.379 | 0.8046 | 0.1275 | 0.052* | |
C13 | −0.2474 (4) | 0.7977 (3) | 0.29391 (19) | 0.0344 (6) | |
H13A | −0.2456 | 0.8549 | 0.3302 | 0.041* | |
H13B | −0.2845 | 0.7342 | 0.3182 | 0.041* | |
C22 | 0.1109 (4) | 0.5767 (2) | 0.30957 (15) | 0.0260 (7) | |
H22 | 0.0128 | 0.5618 | 0.3061 | 0.031* | |
C23 | 0.1872 (5) | 0.5446 (2) | 0.37068 (16) | 0.0373 (9) | |
H23 | 0.1403 | 0.509 | 0.4089 | 0.045* | |
C26 | 0.3233 (4) | 0.6486 (2) | 0.25875 (17) | 0.0261 (7) | |
H26 | 0.3717 | 0.6823 | 0.2201 | 0.031* | |
C24 | 0.3293 (5) | 0.5644 (3) | 0.37565 (19) | 0.0471 (11) | |
H24 | 0.3807 | 0.5419 | 0.417 | 0.056* | |
C25 | 0.3979 (4) | 0.6174 (2) | 0.3202 (2) | 0.0393 (9) | |
H25 | 0.4959 | 0.6324 | 0.3241 | 0.047* | |
C32 | 0.1993 (3) | 0.8649 (2) | 0.18374 (15) | 0.0223 (6) | |
H32 | 0.1853 | 0.858 | 0.2345 | 0.027* | |
C34 | 0.2447 (4) | 0.9782 (3) | 0.08060 (18) | 0.0388 (8) | |
H34 | 0.261 | 1.0468 | 0.0623 | 0.047* | |
C36 | 0.1472 (4) | 0.8045 (3) | 0.06191 (16) | 0.0278 (7) | |
H36 | 0.0974 | 0.7577 | 0.031 | 0.033* | |
C33 | 0.2576 (4) | 0.9577 (2) | 0.15549 (18) | 0.0350 (8) | |
H33 | 0.305 | 1.0058 | 0.1863 | 0.042* | |
C35 | 0.2078 (5) | 0.8969 (3) | 0.03382 (18) | 0.0434 (10) | |
H35 | 0.2235 | 0.9038 | −0.0168 | 0.052* | |
Rh1 | 0.06207 (2) | 0.522795 (15) | 0.100971 (10) | 0.01435 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0230 (16) | 0.0182 (14) | 0.0201 (13) | 0.0012 (10) | −0.0019 (12) | −0.0027 (10) |
O1 | 0.0224 (13) | 0.0363 (13) | 0.0375 (12) | −0.0007 (9) | 0.0068 (10) | −0.0054 (10) |
P1 | 0.0197 (4) | 0.0144 (3) | 0.0109 (3) | −0.0002 (3) | −0.0014 (3) | −0.0011 (2) |
O2 | 0.0264 (12) | 0.0162 (9) | 0.0155 (8) | −0.0010 (9) | 0.0038 (9) | −0.0021 (7) |
O3 | 0.0222 (11) | 0.0178 (11) | 0.0199 (9) | −0.0002 (7) | 0.0036 (8) | −0.0021 (7) |
C2 | 0.0292 (15) | 0.0164 (12) | 0.0120 (11) | −0.0011 (13) | −0.0025 (13) | 0.0023 (9) |
C4 | 0.0209 (15) | 0.0191 (12) | 0.0152 (13) | 0.0002 (11) | −0.0003 (10) | 0.0050 (10) |
C3 | 0.0267 (16) | 0.0167 (12) | 0.0202 (13) | −0.0051 (12) | −0.0016 (12) | 0.0002 (10) |
C5 | 0.043 (2) | 0.0180 (14) | 0.0250 (13) | −0.0045 (14) | 0.0063 (15) | −0.0072 (11) |
C6 | 0.0235 (16) | 0.0287 (16) | 0.0268 (15) | −0.0007 (13) | 0.0037 (12) | 0.0043 (12) |
C31 | 0.046 (2) | 0.0160 (13) | 0.0173 (13) | −0.0047 (13) | −0.0026 (14) | 0.0035 (11) |
C21 | 0.0291 (16) | 0.0155 (13) | 0.0120 (11) | −0.0003 (11) | −0.0047 (12) | −0.0002 (10) |
C11 | 0.0209 (18) | 0.0337 (16) | 0.0264 (14) | 0.0049 (12) | −0.0039 (12) | −0.0160 (13) |
C16 | 0.0217 (16) | 0.0277 (15) | 0.0215 (13) | 0.0030 (12) | −0.0002 (12) | −0.0003 (11) |
C12 | 0.0340 (15) | 0.0293 (12) | 0.0400 (13) | 0.0005 (10) | 0.0058 (11) | −0.0135 (10) |
C14 | 0.0270 (19) | 0.0256 (17) | 0.059 (2) | −0.0020 (13) | 0.0096 (17) | 0.0005 (16) |
C15 | 0.032 (2) | 0.041 (2) | 0.055 (2) | 0.0136 (16) | −0.0134 (18) | −0.0221 (18) |
C13 | 0.0340 (15) | 0.0293 (12) | 0.0400 (13) | 0.0005 (10) | 0.0058 (11) | −0.0135 (10) |
C22 | 0.042 (2) | 0.0177 (14) | 0.0183 (13) | −0.0026 (12) | −0.0014 (13) | 0.0004 (11) |
C23 | 0.078 (3) | 0.0185 (15) | 0.0153 (12) | 0.0046 (16) | −0.0058 (17) | 0.0013 (11) |
C26 | 0.0294 (18) | 0.0163 (14) | 0.0325 (16) | −0.0016 (12) | −0.0064 (14) | −0.0008 (12) |
C24 | 0.084 (3) | 0.0221 (16) | 0.0351 (18) | 0.0128 (19) | −0.038 (2) | −0.0035 (14) |
C25 | 0.042 (2) | 0.0219 (15) | 0.054 (2) | 0.0050 (14) | −0.0323 (18) | −0.0090 (15) |
C32 | 0.0242 (16) | 0.0227 (14) | 0.0200 (13) | −0.0049 (12) | −0.0014 (12) | 0.0034 (11) |
C34 | 0.046 (2) | 0.0363 (17) | 0.0337 (17) | −0.0129 (18) | 0.0090 (15) | 0.0143 (16) |
C36 | 0.038 (2) | 0.0290 (16) | 0.0167 (14) | −0.0021 (14) | 0.0033 (13) | −0.0016 (12) |
C33 | 0.053 (2) | 0.0193 (15) | 0.0332 (17) | −0.0011 (14) | 0.0033 (16) | 0.0041 (13) |
C35 | 0.080 (3) | 0.0309 (18) | 0.0194 (15) | 0.0161 (19) | 0.0104 (18) | 0.0101 (13) |
Rh1 | 0.01800 (10) | 0.01415 (9) | 0.01091 (8) | 0.00045 (8) | 0.00012 (9) | −0.00112 (8) |
C1—O1 | 1.149 (4) | C16—H16A | 0.99 |
C1—Rh1 | 1.802 (3) | C16—H16B | 0.99 |
P1—C31 | 1.819 (3) | C12—C13 | 1.479 (5) |
P1—C21 | 1.821 (3) | C12—H12A | 0.99 |
P1—C11 | 1.836 (3) | C12—H12B | 0.99 |
P1—Rh1 | 2.2328 (6) | C14—C15 | 1.480 (5) |
O2—C2 | 1.269 (4) | C14—C13 | 1.487 (5) |
O2—Rh1 | 2.0764 (18) | C14—H14A | 0.99 |
O3—C4 | 1.274 (3) | C14—H14B | 0.99 |
O3—Rh1 | 2.044 (2) | C15—H15A | 0.99 |
C2—C3 | 1.388 (4) | C15—H15B | 0.99 |
C2—C5 | 1.513 (4) | C13—H13A | 0.99 |
C4—O3 | 1.274 (3) | C13—H13B | 0.99 |
C4—O3 | 1.274 (3) | C22—C23 | 1.401 (4) |
C4—C3 | 1.395 (4) | C22—H22 | 0.95 |
C4—C6 | 1.501 (4) | C23—C24 | 1.372 (6) |
C3—H3 | 0.95 | C23—H23 | 0.95 |
C5—H5A | 0.98 | C26—C25 | 1.394 (4) |
C5—H5B | 0.98 | C26—H26 | 0.95 |
C5—H5C | 0.98 | C24—C25 | 1.387 (6) |
C6—H6A | 0.98 | C24—H24 | 0.95 |
C6—H6B | 0.98 | C25—H25 | 0.95 |
C6—H6C | 0.98 | C32—C33 | 1.406 (4) |
C31—C32 | 1.412 (4) | C32—H32 | 0.95 |
C31—C36 | 1.419 (4) | C34—C35 | 1.393 (5) |
C21—C26 | 1.388 (5) | C34—C33 | 1.412 (5) |
C21—C22 | 1.402 (4) | C34—H34 | 0.95 |
C11—C16 | 1.473 (4) | C36—C35 | 1.410 (5) |
C11—C12 | 1.485 (4) | C36—H36 | 0.95 |
C11—H11 | 1 | C33—H33 | 0.95 |
C16—C15 | 1.469 (5) | C35—H35 | 0.95 |
O1—C1—Rh1 | 179.0 (3) | C15—C14—C13 | 115.3 (3) |
C31—P1—C21 | 105.44 (14) | C15—C14—H14A | 108.5 |
C31—P1—C11 | 103.52 (16) | C13—C14—H14A | 108.5 |
C21—P1—C11 | 105.45 (14) | C15—C14—H14B | 108.5 |
C31—P1—Rh1 | 119.22 (10) | C13—C14—H14B | 108.5 |
C21—P1—Rh1 | 109.80 (9) | H14A—C14—H14B | 107.5 |
C11—P1—Rh1 | 112.35 (10) | C16—C15—C14 | 115.5 (3) |
C2—O2—Rh1 | 126.06 (18) | C16—C15—H15A | 108.4 |
C4—O3—Rh1 | 126.78 (18) | C14—C15—H15A | 108.4 |
O2—C2—C3 | 126.5 (2) | C16—C15—H15B | 108.4 |
O2—C2—C5 | 115.4 (3) | C14—C15—H15B | 108.4 |
C3—C2—C5 | 118.2 (3) | H15A—C15—H15B | 107.5 |
O3—C4—C3 | 126.3 (3) | C12—C13—C14 | 114.5 (3) |
O3—C4—C6 | 115.3 (3) | C12—C13—H13A | 108.6 |
C3—C4—C6 | 118.5 (3) | C14—C13—H13A | 108.6 |
C2—C3—C4 | 125.4 (3) | C12—C13—H13B | 108.6 |
C2—C3—H3 | 117.3 | C14—C13—H13B | 108.6 |
C4—C3—H3 | 117.3 | H13A—C13—H13B | 107.6 |
C2—C5—H5A | 109.5 | C23—C22—C21 | 120.0 (3) |
C2—C5—H5B | 109.5 | C23—C22—H22 | 120 |
H5A—C5—H5B | 109.5 | C21—C22—H22 | 120 |
C2—C5—H5C | 109.5 | C24—C23—C22 | 120.4 (3) |
H5A—C5—H5C | 109.5 | C24—C23—H23 | 119.8 |
H5B—C5—H5C | 109.5 | C22—C23—H23 | 119.8 |
C4—C6—H6A | 109.5 | C21—C26—C25 | 120.6 (3) |
C4—C6—H6B | 109.5 | C21—C26—H26 | 119.7 |
H6A—C6—H6B | 109.5 | C25—C26—H26 | 119.7 |
C4—C6—H6C | 109.5 | C23—C24—C25 | 119.9 (3) |
H6A—C6—H6C | 109.5 | C23—C24—H24 | 120 |
H6B—C6—H6C | 109.5 | C25—C24—H24 | 120 |
C32—C31—C36 | 118.1 (3) | C24—C25—C26 | 120.1 (3) |
C32—C31—P1 | 120.6 (2) | C24—C25—H25 | 119.9 |
C36—C31—P1 | 118.5 (2) | C26—C25—H25 | 119.9 |
C26—C21—C22 | 118.9 (3) | C33—C32—C31 | 120.1 (3) |
C26—C21—P1 | 122.0 (2) | C33—C32—H32 | 119.9 |
C22—C21—P1 | 118.9 (2) | C31—C32—H32 | 119.9 |
C16—C11—C12 | 114.6 (3) | C35—C34—C33 | 119.4 (3) |
C16—C11—P1 | 112.4 (2) | C35—C34—H34 | 120.3 |
C12—C11—P1 | 119.5 (2) | C33—C34—H34 | 120.3 |
C16—C11—H11 | 102.4 | C35—C36—C31 | 119.2 (3) |
C12—C11—H11 | 102.4 | C35—C36—H36 | 120.4 |
P1—C11—H11 | 102.4 | C31—C36—H36 | 120.4 |
C15—C16—C11 | 114.3 (3) | C32—C33—C34 | 119.0 (3) |
C15—C16—H16A | 108.7 | C32—C33—H33 | 120.5 |
C11—C16—H16A | 108.7 | C34—C33—H33 | 120.5 |
C15—C16—H16B | 108.7 | C34—C35—C36 | 119.7 (3) |
C11—C16—H16B | 108.7 | C34—C35—H35 | 120.1 |
H16A—C16—H16B | 107.6 | C36—C35—H35 | 120.1 |
C13—C12—C11 | 113.3 (3) | C1—Rh1—O3 | 177.31 (10) |
C13—C12—H12A | 108.9 | C1—Rh1—O2 | 93.72 (10) |
C11—C12—H12A | 108.9 | O3—Rh1—O2 | 88.69 (8) |
C13—C12—H12B | 108.9 | C1—Rh1—P1 | 88.50 (9) |
C11—C12—H12B | 108.9 | O3—Rh1—P1 | 89.18 (5) |
H12A—C12—H12B | 107.7 | O2—Rh1—P1 | 174.94 (5) |
Rh1—O2—C2—C3 | 2.2 (4) | C11—C16—C15—C14 | 42.9 (4) |
Rh1—O2—C2—C5 | −179.09 (18) | C13—C14—C15—C16 | −40.8 (5) |
Rh1—O3—C4—C3 | 5.7 (4) | C11—C12—C13—C14 | −45.8 (4) |
Rh1—O3—C4—C6 | −172.64 (18) | C15—C14—C13—C12 | 42.3 (4) |
O2—C2—C3—C4 | 2.6 (5) | C26—C21—C22—C23 | 2.2 (4) |
C5—C2—C3—C4 | −176.1 (3) | P1—C21—C22—C23 | 176.0 (2) |
O3—C4—C3—C2 | −6.9 (5) | C21—C22—C23—C24 | −1.0 (4) |
C6—C4—C3—C2 | 171.3 (3) | C22—C21—C26—C25 | −2.9 (4) |
C21—P1—C31—C32 | −43.6 (3) | P1—C21—C26—C25 | −176.5 (2) |
C11—P1—C31—C32 | 66.9 (3) | C22—C23—C24—C25 | 0.6 (5) |
Rh1—P1—C31—C32 | −167.5 (2) | C23—C24—C25—C26 | −1.3 (5) |
C21—P1—C31—C36 | 155.6 (3) | C21—C26—C25—C24 | 2.5 (5) |
C11—P1—C31—C36 | −93.9 (3) | C36—C31—C32—C33 | −16.8 (5) |
Rh1—P1—C31—C36 | 31.8 (3) | P1—C31—C32—C33 | −177.6 (3) |
C31—P1—C21—C26 | −34.9 (3) | C32—C31—C36—C35 | 17.6 (5) |
C11—P1—C21—C26 | −144.0 (2) | P1—C31—C36—C35 | 178.9 (3) |
Rh1—P1—C21—C26 | 94.7 (2) | C31—C32—C33—C34 | 16.1 (5) |
C31—P1—C21—C22 | 151.5 (2) | C35—C34—C33—C32 | −16.1 (6) |
C11—P1—C21—C22 | 42.4 (3) | C33—C34—C35—C36 | 17.2 (6) |
Rh1—P1—C21—C22 | −78.9 (2) | C31—C36—C35—C34 | −18.1 (6) |
C31—P1—C11—C16 | 68.1 (2) | C4—O3—Rh1—O2 | −1.2 (2) |
C21—P1—C11—C16 | 178.6 (2) | C4—O3—Rh1—P1 | −176.6 (2) |
Rh1—P1—C11—C16 | −61.8 (2) | C2—O2—Rh1—C1 | 178.6 (2) |
C31—P1—C11—C12 | −70.5 (3) | C2—O2—Rh1—O3 | −2.6 (2) |
C21—P1—C11—C12 | 40.0 (3) | C31—P1—Rh1—C1 | 42.38 (16) |
Rh1—P1—C11—C12 | 159.6 (2) | C21—P1—Rh1—C1 | −79.31 (14) |
C12—C11—C16—C15 | −46.9 (4) | C11—P1—Rh1—C1 | 163.68 (15) |
P1—C11—C16—C15 | 172.4 (2) | C31—P1—Rh1—O3 | −136.25 (14) |
C16—C11—C12—C13 | 48.4 (4) | C21—P1—Rh1—O3 | 102.06 (12) |
P1—C11—C12—C13 | −173.9 (3) | C11—P1—Rh1—O3 | −14.95 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O3 | 1 | 2.39 | 2.962 (3) | 116 |
C16—H16B···O3 | 0.99 | 2.44 | 3.094 (3) | 123 |
Experimental details
Crystal data | |
Chemical formula | [Rh(C5H7O2)(C18H21P)(CO)] |
Mr | 498.34 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.4682 (5), 12.7534 (6), 18.4602 (9) |
V (Å3) | 2229.10 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.42 × 0.27 × 0.06 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K KappaCCD |
Absorption correction | Multi-scan SADABS (Bruker, 2004) |
Tmin, Tmax | 0.714, 0.950 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12624, 4825, 4672 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.061, 1.06 |
No. of reflections | 4825 |
No. of parameters | 258 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.62 |
Absolute structure | Flack (1983), 2064 Friedel pairs |
Absolute structure parameter | −0.02 (2) |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
C1—O1 | 1.149 (4) | O2—Rh1 | 2.0764 (18) |
C1—Rh1 | 1.802 (3) | O3—Rh1 | 2.044 (2) |
P1—Rh1 | 2.2328 (6) | ||
O1—C1—Rh1 | 179.0 (3) | O3—Rh1—O2 | 88.69 (8) |
C1—Rh1—O3 | 177.31 (10) | C1—Rh1—P1 | 88.50 (9) |
C1—Rh1—O2 | 93.72 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O3 | 1 | 2.39 | 2.962 (3) | 115.8 |
C16—H16B···O3 | 0.99 | 2.44 | 3.094 (3) | 123.3 |
P-Lig | υ(CO) | δ31P | 1J(Rh-P) | Rh-P | C1-O1 | notes |
PPh3 | 1983 | 46 | 177.4 | 2.244 (2) | 1.153 (11) | (i,iv) |
PCyPh2 | 1959 | 53.3 | 171.3 | 2.2327 (6) | 1.149 (4) | (ii) |
PCy2Ph | 1949 | 58.8 | 168.3 | 2.2425 (9) | 1.151 (3) | (iii) |
PCy3 | 1945 | 58 | 170.0 | 2.2613 (10) | 1.169 (4) | (iv) |
Notes: (i) Leipoldt et al. (1978); (ii) This work; (iii) Brink et al. (2007); (iv) Trzeciak et al. (2004). |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
This work is part of an ongoing investigation aimed at determing the steric and electronic effects induced by various phosphine ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphine complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy et al., 1989). Symmetrical di-phosphine ligands result in the producton of acetaldehyde, whereas unsymmetrical di-phosphine ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). The title compound, [Rh(acac)(CO)(PCyPh2)] (Cy = cyclohexyl, Ph = phenyl), (Fig. 1), forms part of our study on complexes of the type [Rh(β-diketone)(CO)(PR1R2R3)] (R1, R2 and R3 = cyclohexyl or phenyl).
Slight distortion of the square-planar coordination sphere is observed as illustrated by a 5.04 (4)° deviation from the square plane. The Rh(I) atom deviates by 0.0596 (2) Å from the plane defined by the four coordinate atoms O2, O3, P1 and C1. The acetylacetonate ligand exhibits a bite angle of 88.72 (7)° and the C1—Rh—P1 bond angle is 88.51 (8)°. The carbonyl ligand is nearly linear (Rh1—C1—O1 = 179.2 (3)°). Intramolecular C—H···O interaction (Table 2) results in twisting of the the acetylacetonate backbone as indicated by the C2—O2—O3—C4 torsion angle (3.1 (2)°).
The steric demand of the cyclohexyldiphenyl phosphine ligand is quantified by the effective cone angle (θE), calculated using the actual Rh—P bond distance (Otto et al., 2000). The θE value of 151° agrees with the value determined by Meij et al. (2003) for the trans-[PdCl2(PCyPh2)2] complex (151 and 155°). The value of the effective cone angle of the title compound fits the sequence of 163° for [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and of 145 and 170° for the corresponding Vaska-type rhodium complexes trans- [Rh(CO)(Cl)(PPh3)2] and trans-[Rh(CO)(Cl)(PCy3)2] (Roodt et al., 2003). In Table 3, the title compound is compared with other closely related Rh(I) phosphine complexes from literature containing the acetylacetonate bidentate ligand.