Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Electron density distributions (EDD) in CeB6 were measured by X-ray diffraction at 100, 165, 230 and 298 K. Analysis with a weak-field model, in which the spin-orbit interaction dominates the energy splitting of the 4f levels, revealed that more 4f electrons were donated from Ce to B6 at the lower temperature. Donated electrons localize around the B—B bonds connecting B6 octahedra. The localized electrons and an expansion of the outermost 5p orbitals change the effective atomic potentials and enhance the anharmonic vibration (AHV) of constituent atoms at lower temperature. Enhanced AHV increases the entropy and makes the electron donation inevitable. Changes in crystal structure, EDD, electron configuration and AHV are found to be closely correlated with one another and the mechanism of the electron transfer in the Kondo crystal CeB6 in the studied temperature range was elucidated. This is, to the authors' knowledge, the first multi-temperature measurement of EDD that elucidates a mechanism of change from the temperature dependence of the EDD. Parameters change consistently at all the temperatures except 298 K, at which the excited states Γ7 of the Ce 4f states have significant electron population. The thermal excitation to Γ7 levels expands the B6 octahedra, since Γ7 has main lobes along 〈111〉 or from Ce to the centre of B6 octahedra. The energy gap between the ground state Γ8 and Γ7 was calculated to be 470 K from the ratio of electron populations of both states. The present experiment opens the door to accurate X-ray EDD analyses of rare earth complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810102167X/oa0037sup1.cif
Contains datablocks global, 100K, 165K, 230K, 298K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810102167X/oa0037100Ksup2.hkl
Contains datablock 100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810102167X/oa0037165Ksup3.hkl
Contains datablock 165K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810102167X/oa0037230Ksup4.hkl
Contains datablock 230K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810102167X/oa0037298Ksup5.hkl
Contains datablock 298K

Computing details top

For all compounds, data collection: MXC(MAC Science) and a program IUANGLE by Tanaka (Tanaka, K.,Kumazawa S., Tsubokawa, M., Maruno, S. & Shirotani, I. (Acta Cryst., A50, 246-252 (1994)). Cell refinement: RSLC-3 UNICS system (Sakurai, T. & Kobayashi, K. (1979), Rep. Inst. Phys. Chem. Res. 55, 69-77) for 100K, 165K, 230K; RSLC-3 UNICS system(Sakurai,T. & Kobayashi,K. (1979), Rep.Inst.Phys.Chem. Res.55,69-77) for 298K. For all compounds, data reduction: RDEDIT (K. Tanaka); program(s) used to refine structure: QNTAO (K. Tanaka, 1988); molecular graphics: ORTEP (Johnson, 1965).

(100K) cerium hexaboride top
Crystal data top
B63·Ce3+Mo Kα radiation, λ = 0.71073 Å
Mr = 204.98Cell parameters from 50 reflections
Cubic, Pm3m(originatthecenterofB6octahedron)θ = 36.5–39.1°
a = 4.1367 (1) ŵ = 16.01 mm1
V = 70.79 (1) Å3T = 100 K
Z = 1Sphere, metallic dark purple
F(000) = 880.04 mm (radius)
Dx = 4.808 Mg m3
Data collection top
Four-circle
diffractometer
167 independent reflections
Radiation source: fine-focus rotating anode1063 reflections with F > 3.0σ(F)
Graphite monochromatorRint = 0.021
Detector resolution: 1.5x1.5 degrees pixels mm-1θmax = 74.6°, θmin = 4.9°
integrated intensities data fom ω/2θ scansh = 1011
Absorption correction: for a sphere
Transmission cefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrange's method (four point interpolation)
k = 911
Tmin = 0.433, Tmax = 0.481l = 910
1089 measured reflections
Refinement top
Refinement on F22 constraints
Least-squares matrix: fullUnit
R[F2 > 2σ(F2)] = 0.006(Δ/σ)max = 0.018
wR(F2) = 0.008Δρmax = 0.38 e Å3
1063 reflectionsΔρmin = 0.40 e Å3
24 parametersExtinction correction: B-C type 1 Gaussian anisotropic
2 restraints
Special details top

Experimental. Multiple diffraction was avoided by ψ-scan. Intensities was measured at equi-temperature region of combinaion of angles ω and χ of four-circle diffractometer

Refinement. Spin-orbit interaction for Ce 4f orbitals. B—C anisotropic type1 extinction parameters B—C anisoropic extinction parameters are as follows 99 (12) 328 (42) 71 (7) 154 (20) -44 (7) -105 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.50.50.50.179 (2)
B0.00.00.2984 (3)0.252 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.00227 (5)0.00227 (5)0.00227 (5)0.00.00.0
B0.00365 (12)0.00365 (12)0.00228 (11)0.00.00.0
Geometric parameters (Å, º) top
Ce—B3.0416 (3)B—Bii1.6676 (17)
B—Bi1.7459 (12)
B—Ce—Bii31.820 (9)B—Ce—Bi33.358 (9)
Symmetry codes: (i) z, x, y; (ii) x, y, z+1.
(165K) top
Crystal data top
B63·Ce3+Mo Kα radiation, λ = 0.71073 Å
Mr = 204.98Cell parameters from 50 reflections
Cubic, Pm3m(originatthecenterofB6octahedron)θ = 36.4–39.0°
a = 4.1381 (1) ŵ = 16.00 mm1
V = 70.86 (1) Å3T = 165 K
Z = 1Sphere, metallic dark purple
F(000) = 880.04 mm (radius)
Dx = 4.803 Mg m3
Data collection top
Four-circle
diffractometer
187 independent reflections
Radiation source: fine-focus rotating anode815 reflections with F > 3.0σ(F)
Graphite monochromatorRint = 0.024
Detector resolution: 1.5x1.5 degrees pixels mm-1θmax = 74.6°, θmin = 4.9°
integrated intensities data fom ω/2θ scansh = 1011
Absorption correction: for a sphere
Transmission cefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrange's method (four point interpolation)
k = 1011
Tmin = 0.433, Tmax = 0.481l = 98
857 measured reflections
Refinement top
Refinement on F22 constraints
Least-squares matrix: fullUnit
R[F2 > 2σ(F2)] = 0.007(Δ/σ)max = 0.021
wR(F2) = 0.008Δρmax = 0.36 e Å3
815 reflectionsΔρmin = 0.53 e Å3
23 parametersExtinction correction: B-C type1 anisotropic
2 restraints
Special details top

Experimental. Multiple diffraction was avoided by ψ-scan. Intensities was measured at equi-temperature region of combinaion of angles ω and ξ of four-circle diffractometer

Refinement. Spin-orbit interaction for Ce 4f orbitals. B—C anisotropic type1 extinction parameters are as follows 86 (7) 230 (18) 44 (3) 109 (10) -26 (3) -61 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.50.50.50.274 (2)
B0.00.00.2972 (3)0.275 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.00347 (5)0.00347 (5)0.00347 (5)0.00.00.0
B0.00397 (12)0.00397 (12)0.00253 (14)0.00.00.0
Geometric parameters (Å, º) top
Ce—B3.0440 (4)B—Bii1.678 (2)
B—Bi1.7395 (16)
B—Ce—Bii32.002 (12)B—Ce—Bi33.203 (12)
Symmetry codes: (i) y, z, x; (ii) x, y, z+1.
(230K) cerium hexaboride top
Crystal data top
B63·Ce3+Mo Kα radiation, λ = 0.71073 Å
Mr = 204.98Cell parameters from 50 reflections
Cubic, Pm3m(originatthecenterofB6octahedron)θ = 36.5–39.1°
a = 4.1391 (1) ŵ = 15.98 mm1
V = 70.91 (1) Å3T = 230 K
Z = 1Sphere, metallic dark purple
F(000) = 880.04 mm (radius)
Dx = 4.800 Mg m3
Data collection top
Four-circle
diffractometer
168 independent reflections
Radiation source: fine-focus rotating anode788 reflections with F > 3.0σ(F)
Graphite monochromatorRint = 0.007
Detector resolution: 1.5x1.5 degrees pixels mm-1θmax = 74.5°, θmin = 4.9°
integrated intensities data fom ω/2θ scansh = 1011
Absorption correction: for a sphere
Transmission cefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrange's method (four point interpolation)
k = 1111
Tmin = 0.433, Tmax = 0.482l = 410
841 measured reflections
Refinement top
Refinement on F22 constraints
Least-squares matrix: fullUnit
R[F2 > 2σ(F2)] = 0.007(Δ/σ)max = 0.030
wR(F2) = 0.008Δρmax = 0.50 e Å3
788 reflectionsΔρmin = 0.49 e Å3
23 parametersExtinction correction: B-C type1 anisotropic
2 restraints
Special details top

Experimental. Multiple diffraction was avoided by ψ-scan. Intensities was measured at equi-temperature region of combinaion of angles ω and χ of four-circle diffractometer

Refinement. Spin-orbit interaction for Ce 4f orbitals. B—C anisotropic type1 extinction parameters are as follows 39 (3) 110 (10) 27 (2) 33 (4) -7(1) -21 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.50.50.50.355 (2)
B0.00.00.2963 (4)0.286 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.00450 (5)0.00450 (5)0.00450 (5)0.00.00.0
B0.00421 (14)0.00421 (14)0.00245 (18)0.00.00.0
Geometric parameters (Å, º) top
Ce—B3.0459 (7)B—Bii1.687 (4)
B—Bi1.734 (3)
B—Ce—Bii32.149 (18)B—Ce—Bi33.077 (18)
Symmetry codes: (i) y, z, x; (ii) x, y, z+1.
(298K) top
Crystal data top
B63·Ce3+Mo Kα radiation, λ = 0.71073 Å
Mr = 204.98Cell parameters from 50 reflections
Cubic, Pm3m(originatthecenterofB6octahedron)θ = 37.7–39.0°
a = 4.1407 (1) ŵ = 15.97 mm1
V = 71.00 (1) Å3T = 298 K
Z = 1Sphere, metallic dark purple
F(000) = 880.04 mm (radius)
Dx = 4.794 Mg m3
Data collection top
Four-circle
diffractometer
192 independent reflections
Radiation source: fine-focus rotating anode983 reflections with F > 3.0σ(F)
Graphite monochromatorRint = 0.045
Detector resolution: 1.5x1.5 degrees pixels mm-1θmax = 74.5°, θmin = 4.9°
integrated intensities data fom ω/2θ scansh = 1011
Absorption correction: for a sphere
Transmission cefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrange's method (four point interpolation)
k = 1011
Tmin = 0.434, Tmax = 0.482l = 710
1079 measured reflections
Refinement top
Refinement on F22 constraints
Least-squares matrix: fullUnit
R[F2 > 2σ(F2)] = 0.008(Δ/σ)max = 0.010
wR(F2) = 0.009Δρmax = 0.51 e Å3
983 reflectionsΔρmin = 0.41 e Å3
25 parametersExtinction correction: B-C type1 anisotropic
2 restraints
Special details top

Experimental. Multiple diffraction was avoided by ψ-scan. Intensities was measured at equi-temperature region of combinaion of angles ω and χ of four-circle diffractometer

Refinement. Spin-orbit interaction for Ce 4f orbitals. B—C anisotropic type1 extinction parameters are as follows 62 (4) 90 (7) 24 (1) 53 (4) 7(1) 11 (1)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.50.50.50.456 (1)
B0.00.00.2989 (4)0.339 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.00577 (5)0.00577 (5)0.00577 (5)0.00.00.0
B0.00493 (13)0.00493 (13)0.0030 (2)0.00.00.0
Geometric parameters (Å, º) top
Ce—B3.0439 (4)B—Bii1.664 (2)
B—Bi1.7511 (15)
B—Ce—Bii31.732 (11)B—Ce—Bi33.433 (11)
Symmetry codes: (i) z, x, y; (ii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds