Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title mol­ecule, C13H10Cl2O3S, the dihedral angle between the mean planes of the 4-tolyl and 2,4-di­chloro­phenyl rings is 43.92 (4)°. There are weak C—H...O hydrogen bonds, which generate rings of motifs S(5), S(6), R21(4), R12(6) and R22(8). The supramolecular aggregation is completed by the presence of C—H...Cl, C—H...π and π...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301208X/ob6251sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301208X/ob6251Isup2.hkl
Contains datablock I

CCDC reference: 217450

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.028
  • wR factor = 0.077
  • Data-to-parameter ratio = 14.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.38 From the CIF: _reflns_number_total 3074 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3319 Completeness (_total/calc) 92.62% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

p-Toluene sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of sigma sub units of the E-coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues.

The dihedral angle between the mean planes of 4-tolyl and 2,4-dichlorophenyl rings is 43.92 (4)°. This shows their non-coplanar orientation similar to that found in 2-chlorophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003b), 8-tosyloxyquinoline (Vembu, Nallu, Garrison & Youngs, 2003c) and in contrast to the near coplanar orientation observed in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003a) and 4-methoxyphenyl 4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003).

The crystal structure of (I) is stabilized by weak C—H···O interactions. The range for the H···O distances (Table 2) agrees with that found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C4—H4···O1 interaction generates a ring of graph set S(5) (Etter, 1990; Bernstein et al., 1995). Another S(5) motif is formed by the C6—H6.·O2 interaction. The C13—H13···O2 interaction generates a S(6) motif. The C6—H6···O2 and C13—H13···O2 interactions constitute a pair of bifurcated acceptor bonds. The C7—H7···O3iii and C7—H7···O1iii (Fig. 2) interactions constitute a pair of bifurcated donor bonds, generating a ring of graph set R21(4). The H7···O3iii and H7···O1iii distances differ by 0.42 (2) Å. The resulting configuration is termed as an unsymmetrical three-centered H-bonded chelated (Desiraju, 1989) which is different from the symmetrical three centered hygrogen-bonded chelate observed in similar structures (Vembu, Nallu, Garrison & Youngs, 2003b,c; Vembu, Nallu, Garrison, Hindi & Youngs, 2003). The C1—H1B···O1iii and C7—H7···O1iii (Fig. 2) interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graph set R12(6). The C7—H7···O3iii and C1—H1B···O1iii (Fig. 2) interactions generate a R22(8) motif which consists of the R21(4) chelate and R12(6) ring motifs. There are several other C—H···O interactions (Fig. 2–4, Table 2) and a C—H···Cl interaction (Fig. 3) which contribute to the supramolecular aggregation. The supramolecular aggregation is completed by the presence of an intramolecular C—H···π interaction (Table 2). The geometry of the C—H···π interaction was obtained from PLATON (Spek, 1998); Cg2 is the centroid of the 2,4-dichlorophenyl ring. In the crystal lattice, the molecules are stacked in layers (Fig. 5) held together by π···π interactions, with a distance of 4.059 Å and 3.672 Å between the centroids of adjacent 4-tolyl rings (Symmetry code: −x, −y, 1 − z) and 2,4-dichlorophenyl rings (Symmetry code: 1 − x, 1 − y, −z), respectively.

Experimental top

4-Toluenesulfonyl chloride (4.7 mmol), dissolved in acetone (4 ml), was added dropwise to 2,4-dichlorophenol (5.5 mol) in aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated title compound (3.3 mmol, yield 70%) was filtered off and recrystallized from a 1:1 mixture of petroleum ether and acetone.

Refinement top

All hydrogen atoms were located from a difference Fourier map and their positional coordinates and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.91 (3)–0.97 (2) Å, the H—C—H angles for the methyl group are in the range 103 (2)–110 (2)° and the C—C—H angles for the aromatic rings are in the range 117.4 (1)–122.2 (1)°.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The Molecular structure of the title molecule (I), with displacement ellipsoids drawn at the 50% probablity level.
[Figure 2] Fig. 2. Diagram showing hydrogen bonds 3, 4, 6 and 8 (the numbering relates to sequence of entries in Table 2).
[Figure 3] Fig. 3. Diagram showing hydrogen bonds 2 and 5 (the numbering relates to sequence of entries in Table 2).
[Figure 4] Fig. 4. Diagram showing hydrogen bonds 1 and 7 (the numbering relates to sequence of entries in Table 2).
[Figure 5] Fig. 5. Packing of the molecule in the unit cell.
2,4-dichlorophenyl 4-toluenesulfonate top
Crystal data top
C13H10Cl2O3SF(000) = 324
Mr = 317.17Dx = 1.598 Mg m3
Triclinic, P1Melting point = 373–375 K
a = 7.7314 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3724 (11) ÅCell parameters from 7298 reflections
c = 10.7055 (15) Åθ = 2.5–28.4°
α = 99.079 (2)°µ = 0.65 mm1
β = 96.119 (2)°T = 100 K
γ = 103.134 (2)°Block, colorless
V = 659.04 (16) Å30.55 × 0.50 × 0.40 mm
Z = 2
Data collection top
CCD area detector
diffractometer
3074 independent reflections
Radiation source: fine-focus sealed tube2954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.716, Tmax = 0.781k = 1110
8295 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.4025P]
where P = (Fo2 + 2Fc2)/3
3074 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H10Cl2O3Sγ = 103.134 (2)°
Mr = 317.17V = 659.04 (16) Å3
Triclinic, P1Z = 2
a = 7.7314 (11) ÅMo Kα radiation
b = 8.3724 (11) ŵ = 0.65 mm1
c = 10.7055 (15) ÅT = 100 K
α = 99.079 (2)°0.55 × 0.50 × 0.40 mm
β = 96.119 (2)°
Data collection top
CCD area detector
diffractometer
3074 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2954 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.781Rint = 0.015
8295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.08Δρmax = 0.39 e Å3
3074 reflectionsΔρmin = 0.32 e Å3
212 parameters
Special details top

Experimental. The Tmin and Tmax values obtained from the SIZE instruction are listed above. The absorption correction was applied using SADABS and it gives 0.901603 ratio of min/max transmission"

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.35514 (5)0.00280 (4)0.23813 (3)0.01748 (10)
Cl10.45681 (5)0.49434 (4)0.31856 (3)0.02440 (10)
Cl20.14177 (5)0.52405 (5)0.14652 (4)0.02600 (10)
O10.47889 (15)0.04614 (14)0.32349 (11)0.0250 (2)
O20.25961 (15)0.11069 (13)0.12540 (11)0.0236 (2)
O30.48113 (13)0.16079 (12)0.19492 (10)0.0174 (2)
C10.1690 (2)0.3051 (2)0.51223 (18)0.0267 (3)
C20.03703 (19)0.23010 (17)0.44474 (15)0.0193 (3)
C30.1225 (2)0.21731 (19)0.51221 (14)0.0205 (3)
C40.2440 (2)0.14659 (18)0.45074 (14)0.0194 (3)
C50.20369 (18)0.08855 (17)0.31954 (13)0.0162 (3)
C60.04635 (19)0.10076 (18)0.24933 (14)0.0184 (3)
C70.07293 (19)0.17108 (18)0.31323 (15)0.0198 (3)
C80.39860 (18)0.24500 (17)0.11238 (13)0.0157 (3)
C90.37926 (18)0.40343 (17)0.16049 (13)0.0165 (3)
C100.30044 (18)0.49065 (17)0.08087 (14)0.0183 (3)
C110.24333 (19)0.41690 (18)0.04656 (14)0.0187 (3)
C120.2659 (2)0.26087 (18)0.09650 (14)0.0206 (3)
C130.34456 (19)0.17467 (18)0.01564 (14)0.0185 (3)
H1A0.202 (4)0.387 (4)0.472 (3)0.069 (9)*
H1B0.273 (3)0.224 (3)0.519 (2)0.048 (7)*
H1C0.126 (4)0.354 (4)0.595 (3)0.066 (8)*
H30.152 (3)0.256 (3)0.602 (2)0.032 (5)*
H40.350 (3)0.138 (3)0.499 (2)0.032 (5)*
H60.022 (2)0.063 (2)0.1578 (18)0.017 (4)*
H70.180 (3)0.177 (3)0.268 (2)0.035 (5)*
H100.286 (3)0.599 (2)0.1125 (18)0.026 (5)*
H120.231 (3)0.214 (3)0.185 (2)0.029 (5)*
H130.356 (2)0.064 (2)0.0455 (18)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.01871 (17)0.01458 (16)0.02211 (18)0.00756 (13)0.00526 (13)0.00569 (13)
Cl10.0303 (2)0.02017 (18)0.02093 (18)0.00586 (14)0.00299 (14)0.00047 (13)
Cl20.02321 (19)0.0284 (2)0.0309 (2)0.01036 (15)0.00224 (14)0.01456 (15)
O10.0249 (5)0.0269 (6)0.0314 (6)0.0153 (5)0.0077 (5)0.0142 (5)
O20.0281 (6)0.0143 (5)0.0279 (6)0.0052 (4)0.0072 (4)0.0007 (4)
O30.0155 (4)0.0170 (5)0.0219 (5)0.0060 (4)0.0036 (4)0.0068 (4)
C10.0238 (8)0.0249 (8)0.0340 (9)0.0093 (6)0.0108 (7)0.0042 (7)
C20.0177 (7)0.0152 (6)0.0265 (7)0.0040 (5)0.0072 (5)0.0060 (5)
C30.0220 (7)0.0214 (7)0.0180 (7)0.0048 (6)0.0037 (5)0.0037 (5)
C40.0176 (7)0.0212 (7)0.0208 (7)0.0059 (5)0.0011 (5)0.0074 (5)
C50.0158 (6)0.0141 (6)0.0201 (7)0.0046 (5)0.0043 (5)0.0045 (5)
C60.0174 (6)0.0182 (6)0.0189 (7)0.0029 (5)0.0015 (5)0.0046 (5)
C70.0146 (6)0.0208 (7)0.0252 (7)0.0050 (5)0.0016 (5)0.0076 (6)
C80.0134 (6)0.0148 (6)0.0206 (7)0.0048 (5)0.0041 (5)0.0056 (5)
C90.0153 (6)0.0158 (6)0.0181 (6)0.0029 (5)0.0049 (5)0.0016 (5)
C100.0161 (6)0.0141 (6)0.0265 (7)0.0047 (5)0.0071 (5)0.0049 (5)
C110.0144 (6)0.0190 (6)0.0250 (7)0.0048 (5)0.0035 (5)0.0093 (6)
C120.0217 (7)0.0203 (7)0.0186 (7)0.0032 (6)0.0023 (5)0.0038 (6)
C130.0199 (7)0.0151 (6)0.0214 (7)0.0051 (5)0.0056 (5)0.0029 (5)
Geometric parameters (Å, º) top
S—O11.4242 (11)C4—C51.389 (2)
S—O21.4262 (11)C4—H40.95 (2)
S—O31.6174 (10)C5—C61.3932 (19)
S—C51.7458 (14)C6—C71.385 (2)
Cl1—C91.7239 (14)C6—H60.965 (18)
Cl2—C111.7350 (15)C7—H70.93 (2)
O3—C81.4021 (16)C8—C131.382 (2)
C1—C21.504 (2)C8—C91.3922 (19)
C1—H1A0.93 (3)C9—C101.385 (2)
C1—H1B0.94 (3)C10—C111.385 (2)
C1—H1C0.91 (3)C10—H100.95 (2)
C2—C71.392 (2)C11—C121.388 (2)
C2—C31.396 (2)C12—C131.387 (2)
C3—C41.388 (2)C12—H120.95 (2)
C3—H30.95 (2)C13—H130.959 (19)
O1—S—O2120.41 (7)C7—C6—C5118.66 (13)
O1—S—O3102.48 (6)C7—C6—H6120.8 (11)
O2—S—O3108.04 (6)C5—C6—H6120.5 (11)
O1—S—C5111.35 (7)C6—C7—C2121.18 (13)
O2—S—C5109.13 (7)C6—C7—H7119.6 (14)
O3—S—C5103.91 (6)C2—C7—H7119.2 (14)
C8—O3—S117.63 (8)C13—C8—C9120.71 (13)
C2—C1—H1A111.5 (18)C13—C8—O3120.44 (12)
C2—C1—H1B112.2 (15)C9—C8—O3118.80 (12)
H1A—C1—H1B110 (2)C10—C9—C8120.13 (13)
C2—C1—H1C113.6 (18)C10—C9—Cl1119.45 (11)
H1A—C1—H1C106 (2)C8—C9—Cl1120.41 (11)
H1B—C1—H1C103 (2)C9—C10—C11118.45 (13)
C7—C2—C3118.77 (13)C9—C10—H10120.9 (12)
C7—C2—C1120.25 (14)C11—C10—H10120.6 (12)
C3—C2—C1120.97 (14)C10—C11—C12122.01 (13)
C4—C3—C2121.27 (14)C10—C11—Cl2118.77 (11)
C4—C3—H3117.4 (13)C12—C11—Cl2119.22 (12)
C2—C3—H3121.3 (13)C13—C12—C11118.94 (14)
C3—C4—C5118.46 (13)C13—C12—H12119.9 (12)
C3—C4—H4119.4 (13)C11—C12—H12121.1 (12)
C5—C4—H4122.2 (13)C8—C13—C12119.73 (13)
C4—C5—C6121.66 (13)C8—C13—H13118.9 (11)
C4—C5—S119.87 (11)C12—C13—H13121.3 (11)
C6—C5—S118.45 (11)
O1—S—O3—C8177.68 (10)C3—C2—C7—C60.0 (2)
O2—S—O3—C854.19 (11)C1—C2—C7—C6179.66 (14)
C5—S—O3—C861.64 (11)S—O3—C8—C1374.50 (15)
C7—C2—C3—C40.3 (2)S—O3—C8—C9108.25 (12)
C1—C2—C3—C4179.30 (14)C13—C8—C9—C101.9 (2)
C2—C3—C4—C50.2 (2)O3—C8—C9—C10179.14 (12)
C3—C4—C5—C60.4 (2)C13—C8—C9—Cl1176.87 (11)
C3—C4—C5—S178.64 (11)O3—C8—C9—Cl10.37 (18)
O1—S—C5—C418.90 (14)C8—C9—C10—C110.4 (2)
O2—S—C5—C4154.21 (11)Cl1—C9—C10—C11178.35 (10)
O3—S—C5—C490.73 (12)C9—C10—C11—C121.2 (2)
O1—S—C5—C6162.80 (11)C9—C10—C11—Cl2179.16 (10)
O2—S—C5—C627.49 (13)C10—C11—C12—C131.4 (2)
O3—S—C5—C687.57 (12)Cl2—C11—C12—C13178.96 (11)
C4—C5—C6—C70.7 (2)C9—C8—C13—C121.7 (2)
S—C5—C6—C7179.01 (11)O3—C8—C13—C12178.89 (12)
C5—C6—C7—C20.6 (2)C11—C12—C13—C80.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.959 (19)2.871 (19)3.7361 (18)150.5 (14)
C10—H10···O2ii0.95 (2)2.47 (2)3.3876 (18)162.0 (16)
C7—H7···O3iii0.93 (2)2.62 (2)3.5211 (18)163.8 (18)
C7—H7···O1iii0.93 (2)3.04 (2)3.5505 (19)116.3 (16)
C7—H7···Cl2iv0.93 (2)2.97 (2)3.4404 (15)112.9 (16)
C4—H4···O1v0.95 (2)2.52 (2)3.3907 (18)153.6 (17)
C1—H1B···O1vi0.94 (3)2.81 (3)3.644 (2)147.7 (19)
C1—H1B···O1iii0.94 (3)2.97 (3)3.668 (2)131.7 (18)
C4—H4···O10.95 (2)2.66 (2)2.9874 (19)100.7 (14)
C6—H6···O20.965 (18)2.605 (18)2.9436 (18)100.9 (12)
C13—H13···O20.959 (19)2.583 (19)3.0093 (18)107.2 (13)
C6—H6···Cg20.97 (2)3.3883.778106.6
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10Cl2O3S
Mr317.17
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7314 (11), 8.3724 (11), 10.7055 (15)
α, β, γ (°)99.079 (2), 96.119 (2), 103.134 (2)
V3)659.04 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.55 × 0.50 × 0.40
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.716, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
8295, 3074, 2954
Rint0.015
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.08
No. of reflections3074
No. of parameters212
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S—O11.4242 (11)Cl1—C91.7239 (14)
S—O21.4262 (11)Cl2—C111.7350 (15)
S—O31.6174 (10)O3—C81.4021 (16)
S—C51.7458 (14)C1—C21.504 (2)
O1—S—O2120.41 (7)O2—S—C5109.13 (7)
O1—S—O3102.48 (6)O3—S—C5103.91 (6)
O2—S—O3108.04 (6)C8—O3—S117.63 (8)
O1—S—C5111.35 (7)
C5—S—O3—C861.64 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.959 (19)2.871 (19)3.7361 (18)150.5 (14)
C10—H10···O2ii0.95 (2)2.47 (2)3.3876 (18)162.0 (16)
C7—H7···O3iii0.93 (2)2.62 (2)3.5211 (18)163.8 (18)
C7—H7···O1iii0.93 (2)3.04 (2)3.5505 (19)116.3 (16)
C7—H7···Cl2iv0.93 (2)2.97 (2)3.4404 (15)112.9 (16)
C4—H4···O1v0.95 (2)2.52 (2)3.3907 (18)153.6 (17)
C1—H1B···O1vi0.94 (3)2.81 (3)3.644 (2)147.7 (19)
C1—H1B···O1iii0.94 (3)2.97 (3)3.668 (2)131.7 (18)
C4—H4···O10.95 (2)2.66 (2)2.9874 (19)100.7 (14)
C6—H6···O20.965 (18)2.605 (18)2.9436 (18)100.9 (12)
C13—H13···O20.959 (19)2.583 (19)3.0093 (18)107.2 (13)
C6—H6···Cg20.97 (2)3.3883.778106.6
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds