Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [CuCl2(C10H8N2)], has twofold symmetry and the coordination geometry around the CuII atom is distorted square-planar. There are weak intermolecular Cu...Cl interactions, forming a chain structure in the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804012565/ob6373sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804012565/ob6373Isup2.hkl
Contains datablock I

CCDC reference: 242292

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.055
  • wR factor = 0.158
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.343 0.657 Tmin' and Tmax expected: 0.423 0.657 RR' = 0.811 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.79 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.03 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 11 PLAT731_ALERT_1_C Bond Calc 3.046(9), Rep 3.047(3) ...... 3.00 su-Rat CU1 -CL2 1.555 5.565
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

(2,2'-Bipyridine-κ2N,N')dichlorocopper(II) top
Crystal data top
[CuCl2(C10H8N2)]F(000) = 580
Mr = 290.63Dx = 1.890 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.08 (5) ÅCell parameters from 1248 reflections
b = 8.95 (2) Åθ = 3.6–25.0°
c = 7.23 (2) ŵ = 2.62 mm1
β = 112.52 (3)°T = 293 K
V = 1021 (5) Å3Prism, green
Z = 40.32 × 0.24 × 0.16 mm
Data collection top
Rigaku Mercury70 (2x2 bin mode)
diffractometer
904 independent reflections
Radiation source: fine-focus sealed tube691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = 1820
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 910
Tmin = 0.343, Tmax = 0.657l = 88
2958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0887P)2]
where P = (Fo2 + 2Fc2)/3
904 reflections(Δ/σ)max < 0.001
69 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.43287 (11)0.25000.0453 (5)
Cl20.08604 (10)0.60623 (18)0.0461 (2)0.0536 (6)
N10.0739 (3)0.2602 (5)0.1011 (7)0.0394 (12)
C60.0424 (4)0.1256 (7)0.1678 (9)0.0397 (14)
C50.1495 (4)0.2694 (8)0.0470 (10)0.0520 (17)
H5A0.17120.36530.09720.062*
C40.1972 (4)0.1461 (9)0.1300 (10)0.0598 (19)
H4A0.25140.15610.23510.072*
C30.0869 (5)0.0019 (8)0.0913 (10)0.0532 (17)
H3A0.06350.09680.14180.064*
C20.1656 (5)0.0083 (9)0.0588 (11)0.0608 (19)
H2A0.19770.07930.11260.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0339 (7)0.0266 (7)0.0571 (8)0.0000.0029 (5)0.000
Cl20.0487 (10)0.0334 (9)0.0599 (11)0.0074 (7)0.0000 (8)0.0046 (7)
N10.030 (3)0.029 (3)0.050 (3)0.0023 (19)0.005 (2)0.001 (2)
C60.037 (3)0.035 (4)0.044 (3)0.001 (3)0.013 (3)0.001 (2)
C50.037 (4)0.045 (4)0.063 (4)0.002 (3)0.007 (3)0.001 (3)
C40.041 (4)0.069 (5)0.056 (4)0.011 (4)0.003 (3)0.022 (4)
C30.062 (4)0.032 (4)0.060 (4)0.008 (3)0.017 (4)0.009 (3)
C20.064 (5)0.047 (4)0.070 (5)0.022 (4)0.024 (4)0.018 (4)
Geometric parameters (Å, º) top
Cu1—N12.024 (6)C6—C6i1.482 (12)
Cu1—N1i2.024 (6)C5—C41.366 (10)
Cu1—Cl2i2.254 (4)C5—H5A0.9500
Cu1—Cl22.254 (4)C4—C21.366 (11)
Cu1—Cl2ii3.047 (3)C4—H4A0.9500
N1—C51.328 (8)C3—C21.369 (9)
N1—C61.332 (8)C3—H3A0.9500
C6—C31.365 (9)C2—H2A0.9500
N1—Cu1—N1i80.5 (3)N1—C5—H5A118.8
N1—Cu1—Cl2i172.16 (14)C4—C5—H5A118.8
N1i—Cu1—Cl2i93.4 (2)C5—C4—C2118.7 (7)
N1—Cu1—Cl293.4 (2)C5—C4—H4A120.7
N1i—Cu1—Cl2172.16 (14)C2—C4—H4A120.7
Cl2i—Cu1—Cl293.0 (2)C6—C3—C2119.4 (7)
C5—N1—C6118.8 (5)C6—C3—H3A120.3
C5—N1—Cu1126.7 (4)C2—C3—H3A120.3
C6—N1—Cu1114.5 (4)C4—C2—C3119.0 (6)
N1—C6—C3121.6 (6)C4—C2—H2A120.5
N1—C6—C6i115.2 (3)C3—C2—H2A120.5
C3—C6—C6i123.2 (4)N1—Cu1—Cl2ii84.8 (3)
N1—C5—C4122.5 (6)Cl2—Cu1—Cl2ii89.3 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds