Buy article online - an online subscription or single-article purchase is required to access this article.
Possible crystal structures of ethyl-tert-butyl ether (ETBE) were predicted by global lattice-energy minimizations using the force-field approach. 33 structures were found within an energy range of 2 kJ mol-1 above the global minimum. Low-temperature crystallization experiments were carried out at 80-160 K. The crystal structure was determined from X-ray powder data. ETBE crystallizes in C2/m, Z = 4, with molecules on mirror planes. The ETBE molecule adopts a trans conformation with a (CH3)3C-O-C-C torsion angle of 180°. The experimental structure corresponds with high accuracy to the predicted structure with energy rank 2, which has an energy of 0.54 kJ mol-1 above the global minimum and is the most dense low-energy structure. In some crystallization experiments a second polymorph was observed, but the quality of the powder data did not allow the determination of the crystal structure. Possibilities and limitations are discussed for solving crystal structures from powder diffraction data by real-space methods and lattice-energy minimizations.
Supporting information
CCDC reference: 822665
Data collection: STOE WinXPOW (STOE & Cie GmbH, 2005); cell refinement: TOPAS Academic (Coelho, 2007); data reduction: DASH (David et al., 2006); program(s) used to solve structure: DASH (David et al., 2006); program(s) used to refine structure: TOPAS Academic (Coelho, 2007); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2009).
2-ethoxy-2-methylpropane
top
Crystal data top
C6H14O | none |
Mr = 102.17 | Dx = 0.971 Mg m−3 |
Monoclinic, C2/m | Cu Kα1 radiation, λ = 1.54056 Å |
a = 14.7170 (3) Å | µ = 0.49 mm−1 |
b = 7.76462 (17) Å | T = 123 K |
c = 6.22813 (16) Å | Particle morphology: no specific habit |
β = 101.0148 (15)° | colourless |
V = 698.59 (3) Å3 | cylinder, 10 × 0.7 mm |
Z = 4 | Specimen preparation: Prepared at 123 K |
F(000) = 232.0 | |
Data collection top
STOE Stadi-P diffractometer | Data collection mode: transmission |
Primary focussing, Ge 111 monochromator | Scan method: step |
Specimen mounting: glass capillary | 2θmin = 5.0°, 2θmax = 69.99°, 2θstep = 0.01° |
Refinement top
Least-squares matrix: full with fixed elements per cycle | 114 parameters |
Rp = 0.034 | 32 restraints |
Rwp = 0.046 | 0 constraints |
Rexp = 0.017 | All H-atom parameters refined |
χ2 = 7.366 | Weighting scheme based on measured s.u.'s |
6500 data points | (Δ/σ)max = 0.001 |
Excluded region(s): none | Background function: Chebyshev with 50 terms |
Profile function: modified Thompson-Cox-Hastings pseudo-Voigt(Young, 1993) | Preferred orientation correction: Correction based on March (1932) |
Crystal data top
C6H14O | V = 698.59 (3) Å3 |
Mr = 102.17 | Z = 4 |
Monoclinic, C2/m | Cu Kα1 radiation, λ = 1.54056 Å |
a = 14.7170 (3) Å | µ = 0.49 mm−1 |
b = 7.76462 (17) Å | T = 123 K |
c = 6.22813 (16) Å | cylinder, 10 × 0.7 mm |
β = 101.0148 (15)° | |
Data collection top
STOE Stadi-P diffractometer | Scan method: step |
Specimen mounting: glass capillary | 2θmin = 5.0°, 2θmax = 69.99°, 2θstep = 0.01° |
Data collection mode: transmission | |
Refinement top
Rp = 0.034 | 6500 data points |
Rwp = 0.046 | 114 parameters |
Rexp = 0.017 | 32 restraints |
χ2 = 7.366 | All H-atom parameters refined |
Special details top
Experimental. specimen was rotated, amorphous SiO2 in glass capillary |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O4 | 0.26110 (11) | 0.00000 | 0.3763 (3) | 0.0337* | |
C1 | 0.14543 (12) | 0.00000 | 0.5910 (3) | 0.0337* | |
C2 | 0.16127 (12) | 0.00000 | 0.3546 (3) | 0.0337* | |
C3 | 0.11775 (10) | 0.16530 (19) | 0.2431 (3) | 0.0337* | |
C5 | 0.29674 (12) | 0.00000 | 0.1785 (3) | 0.0337* | |
C6 | 0.40379 (12) | 0.00000 | 0.2339 (3) | 0.0337* | |
H1A | 0.0702 (4) | 0.00000 | 0.5947 (14) | 0.0405* | |
H1B | 0.1790 (3) | 0.1103 (5) | 0.6798 (7) | 0.0405* | |
H3A | 0.0444 (3) | 0.1729 (5) | 0.2514 (7) | 0.0405* | |
H3B | 0.1531 (3) | 0.2799 (6) | 0.3186 (8) | 0.0405* | |
H3C | 0.1234 (3) | 0.1648 (6) | 0.0743 (8) | 0.0405* | |
H5A | 0.2728 (3) | −0.1122 (5) | 0.0794 (8) | 0.0405* | |
H6A | 0.4319 (4) | 0.00000 | 0.0828 (12) | 0.0405* | |
H6B | 0.4288 (3) | −0.1122 (5) | 0.3297 (8) | 0.0405* | |
Geometric parameters (Å, º) top
O4—C2 | 1.450 (2) | C3—H3A | 1.092 (5) |
O4—C5 | 1.428 (3) | C3—H3B | 1.091 (5) |
C1—C2 | 1.534 (3) | C3—H3C | 1.070 (5) |
C2—C3 | 1.5394 (19) | C5—H5A | 1.087 (4) |
C5—C6 | 1.547 (3) | C6—H6A | 1.098 (7) |
C1—H1A | 1.112 (6) | C6—H6B | 1.080 (4) |
C1—H1B | 1.086 (4) | | |
| | | |
C2—O4—C5 | 116.89 (16) | C2—C3—H3C | 109.7 (3) |
O4—C2—C1 | 104.34 (15) | H3A—C3—H3B | 109.3 (3) |
O4—C2—C3 | 111.65 (10) | H3A—C3—H3C | 108.0 (4) |
C1—C2—C3 | 107.85 (11) | H3B—C3—H3C | 107.8 (4) |
O4—C5—C6 | 109.50 (15) | O4—C5—H5A | 110.9 (3) |
C2—C1—H1A | 110.8 (5) | C6—C5—H5A | 109.4 (3) |
C2—C1—H1B | 110.6 (3) | C5—C6—H6A | 110.1 (4) |
H1A—C1—H1B | 110.3 (4) | C5—C6—H6B | 110.4 (3) |
C2—C3—H3A | 110.7 (2) | H6A—C6—H6B | 109.2 (3) |
C2—C3—H3B | 111.3 (3) | | |
Experimental details
Crystal data |
Chemical formula | C6H14O |
Mr | 102.17 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 123 |
a, b, c (Å) | 14.7170 (3), 7.76462 (17), 6.22813 (16) |
β (°) | 101.0148 (15) |
V (Å3) | 698.59 (3) |
Z | 4 |
Radiation type | Cu Kα1, λ = 1.54056 Å |
µ (mm−1) | 0.49 |
Specimen shape, size (mm) | Cylinder, 10 × 0.7 |
|
Data collection |
Diffractometer | STOE Stadi-P diffractometer |
Specimen mounting | Glass capillary |
Data collection mode | Transmission |
Scan method | Step |
2θ values (°) | 2θmin = 5.0 2θmax = 69.99 2θstep = 0.01 |
|
Refinement |
R factors and goodness of fit | Rp = 0.034, Rwp = 0.046, Rexp = 0.017, χ2 = 7.366 |
No. of data points | 6500 |
No. of parameters | 114 |
No. of restraints | 32 |
H-atom treatment | All H-atom parameters refined |
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.