Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013149/om6040sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013149/om6040Isup2.hkl |
CCDC reference: 172211
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.004 Å
- R factor = 0.035
- wR factor = 0.106
- Data-to-parameter ratio = 7.9
checkCIF results
No syntax errors found ADDSYM reports no extra symmetry General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 67.88 From the CIF: _reflns_number_total 1024 From the CIF: _diffrn_reflns_limit_ max hkl 6. 8. 25. From the CIF: _diffrn_reflns_limit_ min hkl 0. 0. 0. TEST1: Expected hkl limits for theta max Calculated maximum hkl 6. 8. 28. Calculated minimum hkl -6. -8. -28. ALERT: Expected hkl max differ from CIF values REFLT_03 From the CIF: _diffrn_reflns_theta_max 67.88 From the CIF: _reflns_number_total 1024 Count of symmetry unique reflns 1066 Completeness (_total/calc) 96.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
Colorless single crystals of (I) were grown as transparent needles, from a saturated aqueous solution containing L-alanine and maleic acid in a 1:1 stoichiometric ratio. The density was determined by flotation method using a liquid mixture of xylene and bromoform.
The absolute configuration of L-alaninium maleate was not established by the analysis but is known from the configuration of the starting reagents. The H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms with HFIX instructions using SHELXL97 (Sheldrick, 1997) defaults.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.
Fig. 1. The molecular structure of (I) with atom-numbering scheme and 50% probability displacement ellipsoids. | |
Fig. 2. Packing diagram of the molecules of (I) viewed down tha a axis. |
C3H8O2N+·C4H3O4− | Dx = 1.394 Mg m−3 Dm = 1.40 (2) Mg m−3 Dm measured by flotation in a liquid mixture of xylene and bromoform |
Mr = 205.17 | Cu Kα radiation, λ = 1.54180 Å |
Orthorhombic, P212121 | Cell parameters from 25 reflections |
a = 5.5873 (11) Å | θ = 18–27° |
b = 7.3864 (17) Å | µ = 1.08 mm−1 |
c = 23.688 (3) Å | T = 293 K |
V = 977.6 (3) Å3 | Needle, colorless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
F(000) = 432 |
Enraf-Nonius CAD-4 diffractometer | 977 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 67.9°, θmin = 3.7° |
ω–2θ scans | h = 0→6 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→8 |
Tmin = 0.76, Tmax = 0.90 | l = 0→25 |
1024 measured reflections | 2 standard reflections every 200 reflections |
1024 independent reflections | intensity decay: 2% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0739P)2 + 0.1453P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1024 reflections | Δρmax = 0.16 e Å−3 |
130 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.018 (2) |
C3H8O2N+·C4H3O4− | V = 977.6 (3) Å3 |
Mr = 205.17 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 5.5873 (11) Å | µ = 1.08 mm−1 |
b = 7.3864 (17) Å | T = 293 K |
c = 23.688 (3) Å | 0.30 × 0.20 × 0.10 mm |
Enraf-Nonius CAD-4 diffractometer | 977 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.76, Tmax = 0.90 | 2 standard reflections every 200 reflections |
1024 measured reflections | intensity decay: 2% |
1024 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.16 e Å−3 |
1024 reflections | Δρmin = −0.16 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8011 (3) | 0.4977 (3) | −0.05688 (7) | 0.0578 (6) | |
H1 | 0.8917 | 0.5114 | −0.0838 | 0.087* | |
O2 | 1.1022 (3) | 0.6213 (2) | −0.00888 (6) | 0.0434 (4) | |
O3 | −0.1268 (3) | 0.4926 (5) | 0.79094 (8) | 0.0725 (8) | |
H3 | −0.1157 | 0.4609 | 0.7579 | 0.109* | |
O4 | 0.1121 (3) | 0.5327 (3) | 0.86261 (7) | 0.0519 (5) | |
O5 | −0.0899 (3) | 0.4591 (4) | 0.68949 (8) | 0.0638 (7) | |
O6 | 0.1962 (3) | 0.4362 (4) | 0.62659 (8) | 0.0640 (6) | |
N1 | 0.8367 (4) | 0.6369 (3) | 0.08669 (7) | 0.0379 (5) | |
H1A | 0.7545 | 0.6132 | 0.1180 | 0.057* | |
H1B | 0.8063 | 0.7496 | 0.0755 | 0.057* | |
H1C | 0.9925 | 0.6251 | 0.0936 | 0.057* | |
C1 | 0.9067 (4) | 0.5515 (3) | −0.01082 (9) | 0.0358 (5) | |
C2 | 0.7648 (4) | 0.5082 (3) | 0.04164 (9) | 0.0377 (5) | |
H2A | 0.5934 | 0.5213 | 0.0338 | 0.045* | |
C3 | 0.8171 (7) | 0.3151 (4) | 0.06115 (13) | 0.0621 (9) | |
H3A | 0.7258 | 0.2892 | 0.0945 | 0.093* | |
H3B | 0.9846 | 0.3032 | 0.0694 | 0.093* | |
H3C | 0.7739 | 0.2315 | 0.0318 | 0.093* | |
C4 | 0.0808 (4) | 0.5129 (3) | 0.81158 (10) | 0.0422 (6) | |
C5 | 0.2939 (4) | 0.5150 (6) | 0.77490 (12) | 0.0609 (9) | |
H5 | 0.4379 | 0.5342 | 0.7936 | 0.073* | |
C6 | 0.3133 (4) | 0.4940 (6) | 0.71949 (12) | 0.0660 (10) | |
H6 | 0.4693 | 0.5012 | 0.7060 | 0.079* | |
C7 | 0.1314 (4) | 0.4614 (4) | 0.67550 (10) | 0.0482 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0535 (11) | 0.0857 (14) | 0.0341 (10) | −0.0231 (12) | 0.0043 (8) | −0.0119 (9) |
O2 | 0.0419 (9) | 0.0564 (9) | 0.0319 (9) | −0.0125 (8) | 0.0064 (7) | −0.0009 (7) |
O3 | 0.0314 (9) | 0.150 (2) | 0.0362 (11) | −0.0095 (13) | 0.0043 (7) | −0.0252 (13) |
O4 | 0.0540 (10) | 0.0730 (11) | 0.0286 (9) | −0.0020 (10) | 0.0005 (8) | −0.0059 (8) |
O5 | 0.0292 (8) | 0.1244 (18) | 0.0378 (11) | 0.0002 (11) | −0.0022 (7) | −0.0211 (11) |
O6 | 0.0415 (10) | 0.1157 (17) | 0.0347 (11) | 0.0010 (11) | 0.0015 (8) | −0.0116 (11) |
N1 | 0.0382 (10) | 0.0485 (10) | 0.0270 (10) | 0.0039 (9) | 0.0042 (8) | 0.0021 (8) |
C1 | 0.0384 (11) | 0.0383 (9) | 0.0308 (12) | −0.0026 (10) | 0.0017 (9) | 0.0002 (8) |
C2 | 0.0346 (10) | 0.0462 (12) | 0.0323 (12) | −0.0037 (10) | 0.0018 (9) | 0.0032 (9) |
C3 | 0.083 (2) | 0.0442 (12) | 0.0597 (17) | −0.0093 (15) | 0.0104 (17) | 0.0123 (12) |
C4 | 0.0372 (11) | 0.0568 (13) | 0.0327 (14) | 0.0015 (12) | −0.0015 (10) | −0.0065 (10) |
C5 | 0.0266 (12) | 0.118 (3) | 0.0385 (15) | −0.0019 (16) | −0.0040 (10) | −0.0193 (16) |
C6 | 0.0268 (12) | 0.132 (3) | 0.0388 (14) | −0.0023 (17) | 0.0022 (10) | −0.0191 (18) |
C7 | 0.0320 (11) | 0.0828 (18) | 0.0298 (12) | 0.0021 (13) | 0.0012 (10) | −0.0104 (12) |
O1—C1 | 1.303 (3) | C1—C2 | 1.509 (3) |
O1—H1 | 0.8200 | C2—C3 | 1.527 (3) |
O2—C1 | 1.209 (3) | C2—H2A | 0.9800 |
O3—C4 | 1.267 (3) | C3—H3A | 0.9600 |
O3—H3 | 0.8200 | C3—H3B | 0.9600 |
O4—C4 | 1.230 (3) | C3—H3C | 0.9600 |
O5—C7 | 1.281 (3) | C4—C5 | 1.474 (3) |
O6—C7 | 1.228 (3) | C5—C6 | 1.326 (4) |
N1—C2 | 1.485 (3) | C5—H5 | 0.9300 |
N1—H1A | 0.8900 | C6—C7 | 1.475 (4) |
N1—H1B | 0.8900 | C6—H6 | 0.9300 |
N1—H1C | 0.8900 | ||
C1—O1—H1 | 109.5 | C2—C3—H3B | 109.5 |
C4—O3—H3 | 109.5 | H3A—C3—H3B | 109.5 |
C2—N1—H1A | 109.5 | C2—C3—H3C | 109.5 |
C2—N1—H1B | 109.5 | H3A—C3—H3C | 109.5 |
H1A—N1—H1B | 109.5 | H3B—C3—H3C | 109.5 |
C2—N1—H1C | 109.5 | O4—C4—O3 | 121.6 (2) |
H1A—N1—H1C | 109.5 | O4—C4—C5 | 117.6 (2) |
H1B—N1—H1C | 109.5 | O3—C4—C5 | 120.8 (2) |
O2—C1—O1 | 124.8 (2) | C6—C5—C4 | 130.4 (2) |
O2—C1—C2 | 122.3 (2) | C6—C5—H5 | 114.8 |
O1—C1—C2 | 112.8 (2) | C4—C5—H5 | 114.8 |
N1—C2—C1 | 108.28 (18) | C5—C6—C7 | 131.4 (2) |
N1—C2—C3 | 109.2 (2) | C5—C6—H6 | 114.3 |
C1—C2—C3 | 110.3 (2) | C7—C6—H6 | 114.3 |
N1—C2—H2A | 109.7 | O6—C7—O5 | 121.8 (2) |
C1—C2—H2A | 109.7 | O6—C7—C6 | 119.2 (2) |
C3—C2—H2A | 109.7 | O5—C7—C6 | 119.0 (2) |
C2—C3—H3A | 109.5 | ||
O2—C1—C2—N1 | 27.4 (3) | O3—C4—C5—C6 | −1.8 (6) |
O1—C1—C2—N1 | −155.8 (2) | C4—C5—C6—C7 | −0.1 (8) |
O2—C1—C2—C3 | −92.0 (3) | C5—C6—C7—O6 | −175.9 (5) |
O1—C1—C2—C3 | 84.8 (3) | C5—C6—C7—O5 | 3.7 (7) |
O4—C4—C5—C6 | 178.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.78 | 2.593 (2) | 174 |
O3—H3···O5 | 0.82 | 1.63 | 2.425 (3) | 164 |
N1—H1A···O5ii | 0.89 | 2.00 | 2.887 (3) | 175 |
N1—H1B···O2iii | 0.89 | 2.17 | 2.881 (2) | 137 |
N1—H1B···O4iv | 0.89 | 2.43 | 2.996 (3) | 122 |
N1—H1C···O6v | 0.89 | 1.96 | 2.828 (3) | 165 |
C5—H5···O3vi | 0.93 | 2.45 | 3.264 (3) | 146 |
C6—H6···O5vi | 0.93 | 2.51 | 3.419 (3) | 165 |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1/2, −y+1, z−1/2; (iii) x−1/2, −y+3/2, −z; (iv) x+1/2, −y+3/2, −z+1; (v) −x+3/2, −y+1, z−1/2; (vi) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C3H8O2N+·C4H3O4− |
Mr | 205.17 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.5873 (11), 7.3864 (17), 23.688 (3) |
V (Å3) | 977.6 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.76, 0.90 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1024, 1024, 977 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.106, 1.10 |
No. of reflections | 1024 |
No. of parameters | 130 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.16 |
Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.
O1—C1 | 1.303 (3) | N1—C2 | 1.485 (3) |
O2—C1 | 1.209 (3) | C1—C2 | 1.509 (3) |
O3—C4 | 1.267 (3) | C2—C3 | 1.527 (3) |
O4—C4 | 1.230 (3) | C4—C5 | 1.474 (3) |
O5—C7 | 1.281 (3) | C5—C6 | 1.326 (4) |
O6—C7 | 1.228 (3) | C6—C7 | 1.475 (4) |
O2—C1—O1 | 124.8 (2) | O4—C4—C5 | 117.6 (2) |
O2—C1—C2 | 122.3 (2) | O3—C4—C5 | 120.8 (2) |
O1—C1—C2 | 112.8 (2) | C6—C5—C4 | 130.4 (2) |
N1—C2—C1 | 108.28 (18) | C5—C6—C7 | 131.4 (2) |
N1—C2—C3 | 109.2 (2) | O6—C7—O5 | 121.8 (2) |
C1—C2—C3 | 110.3 (2) | O6—C7—C6 | 119.2 (2) |
O4—C4—O3 | 121.6 (2) | O5—C7—C6 | 119.0 (2) |
O2—C1—C2—N1 | 27.4 (3) | O3—C4—C5—C6 | −1.8 (6) |
O1—C1—C2—N1 | −155.8 (2) | C4—C5—C6—C7 | −0.1 (8) |
O2—C1—C2—C3 | −92.0 (3) | C5—C6—C7—O6 | −175.9 (5) |
O1—C1—C2—C3 | 84.8 (3) | C5—C6—C7—O5 | 3.7 (7) |
O4—C4—C5—C6 | 178.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.78 | 2.593 (2) | 174.0 |
O3—H3···O5 | 0.82 | 1.63 | 2.425 (3) | 163.8 |
N1—H1A···O5ii | 0.89 | 2.00 | 2.887 (3) | 174.8 |
N1—H1B···O2iii | 0.89 | 2.17 | 2.881 (2) | 136.8 |
N1—H1B···O4iv | 0.89 | 2.43 | 2.996 (3) | 121.6 |
N1—H1C···O6v | 0.89 | 1.96 | 2.828 (3) | 164.5 |
C5—H5···O3vi | 0.93 | 2.45 | 3.264 (3) | 145.8 |
C6—H6···O5vi | 0.93 | 2.51 | 3.419 (3) | 164.8 |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1/2, −y+1, z−1/2; (iii) x−1/2, −y+3/2, −z; (iv) x+1/2, −y+3/2, −z+1; (v) −x+3/2, −y+1, z−1/2; (vi) x+1, y, z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
X-ray studies on crystalline complexes of amino acids with simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), are expected to throw light on the nature of intermolecular interactions and biomolecular aggregation patterns (Vijayan, 1988; Prasad & Vijayan, 1993). The crystal structures of complexes of oxalic acid with glycine (Subha Nandhini et al., 2001a), sarcosine (Krishnakumar et al., 1999), L-alanine (Subha Nandhini et al., 2001b) and DL-alanine (Subha Nandhini et al., 2001c) were elucidated recently. The present study reports the crystal structure of L-alaninium maleate, as part of a series of investigations being carried out, at atomic resolution, on amino acid–carboxylic acid complexes, in our laboratory.
Fig. 1 shows the molecular structure with the numbering scheme. The alanine molecule exists in the cationic form with a positively charged amino group and an uncharged carboxylic acid group. The maleic acid molecule exists in the mono-ionized state (i.e. as a semimaleate). A common feature observed among the crystal structures of L-alaninium oxalate, DL-alaninium oxalate and (I) is that their cell dimensions are almost similar. However, the crystals of the racemate are monoclinic and those of the isomers are orthorhombic. The semimaleate ion is essentially planar and the intramolecular hydrogen bond between atoms O3 and O5 is found to be asymmetric as in the crystal structure of maleic acid (James & Williams, 1974).
Fig. 2 shows the packing of molecules of (I) viewed down the a axis. The alaninium and semimaleate ions form alternate columns parallel to the b axis. There are no direct hydrogen-bond interactions between the semimaleate anions. They link the alaninium ions into a linear chain running parallel to the longer c axis. The overall aggregation pattern is similar to that observed in the L-alanine–oxalic acid complex. A comparison of the crystal structure of (I) with those of complexes of maleic acid with glycine (Rajagopal et al., 2001), DL– and L-arginine (Ravishankar et al., 1998) and L-histidine and L-lysine (Pratap et al., 2000) show that the intrinsic aggregation properties of individual molecules in a particular amino acid–carboxylic acid complex seem to largely depend on the nature of the amino acid.