Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystal structures have been determined for the two diastereomeric salts formed between S-lactic acid (S-LA) and 1-phenylethylamine (PEA). The relative stabilities of the salts have been investigated by differential scanning calorimetry and solubility measurements in acetonitrile. The less soluble salt obtained from water, (R-PEA)(S-LA), is the less dense. It belongs to the orthorhombic space group P2_12_12_1, Z = 4. The more soluble salt, (S-PEA)(S-LA)·H_2O, crystallized from ethanol is monoclinic, space group P2_1, Z = 2. The crystal structure showed that the water molecule is well integrated into the hydrogen-bond network in the more soluble salt, which explains the fruitless attempts made to obtain the corresponding unhydrated salt. The lactate ion adopts different conformations in the two salts. The relative energies were investigated by Hartree-Fock calculations, showing that the lactate ion is in a conformation with higher energy in the more soluble salt. The difference in solubility between the two salts can be attributed to an interplay of enthalpy and entropy effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102013824/os0096sup1.cif
Contains datablocks R, S, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102013824/os0096Rsup2.hkl
Contains datablock R

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102013824/os0096Ssup3.hkl
Contains datablock S

CCDC references: 201627; 201628

Computing details top

For both compounds, data collection: CAD-4 (Enraf-Nonius, 1989); cell refinement: CAD-4 (Enraf-Nonius, 1989); data reduction: DREADD (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(R) R-1-Phenylethylammonium S-Lactate top
Crystal data top
C8H12N+·C3H5O3Dx = 1.213 Mg m3
Mr = 211.26Melting point: 398.9(6) K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.8465 (10) Åθ = 39.9–42.2°
b = 6.9702 (7) ŵ = 0.72 mm1
c = 24.248 (4) ÅT = 122 K
V = 1157.1 (3) Å3Plate, colourless
Z = 40.48 × 0.21 × 0.12 mm
F(000) = 456
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 74.9°, θmin = 3.7°
Graphite monochromatorh = 08
ω –2θ scansk = 08
8032 measured reflectionsl = 2930
2384 independent reflections5 standard reflections every 167 min
2342 reflections with I > 2σ(I) intensity decay: 9.2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.057P)2 + 0.081P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.24 e Å3
2384 reflectionsΔρmin = 0.21 e Å3
205 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0116 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (14)
Crystal data top
C8H12N+·C3H5O3V = 1157.1 (3) Å3
Mr = 211.26Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.8465 (10) ŵ = 0.72 mm1
b = 6.9702 (7) ÅT = 122 K
c = 24.248 (4) Å0.48 × 0.21 × 0.12 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.021
8032 measured reflections5 standard reflections every 167 min
2384 independent reflections intensity decay: 9.2%
2342 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.077Δρmax = 0.24 e Å3
S = 1.03Δρmin = 0.21 e Å3
2384 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
205 parametersAbsolute structure parameter: 0.03 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87450 (11)0.18329 (11)0.19946 (3)0.02627 (18)
O20.68966 (12)0.07601 (11)0.21312 (3)0.0304 (2)
O30.54364 (11)0.40455 (10)0.19709 (3)0.02632 (18)
C10.71393 (14)0.09831 (14)0.19988 (4)0.0200 (2)
C20.53014 (14)0.20717 (14)0.18255 (4)0.0205 (2)
C30.50514 (17)0.1914 (2)0.12039 (4)0.0297 (2)
H2O0.482 (2)0.417 (2)0.2290 (5)0.031 (3)*
H2C0.417 (2)0.143 (2)0.2012 (6)0.027 (3)*
H3A0.385 (3)0.255 (3)0.1103 (8)0.054 (5)*
H3B0.618 (3)0.253 (2)0.1015 (7)0.044 (5)*
H3C0.497 (3)0.067 (3)0.1077 (7)0.057 (5)*
N0.92057 (12)0.60007 (12)0.20306 (3)0.02020 (18)
C41.19783 (17)0.75942 (18)0.15650 (5)0.0303 (2)
C51.06116 (14)0.58710 (15)0.15571 (4)0.0221 (2)
C60.94885 (15)0.56932 (16)0.10202 (4)0.0228 (2)
C70.82354 (18)0.71305 (18)0.08416 (5)0.0323 (2)
C80.72198 (19)0.6945 (2)0.03462 (5)0.0369 (3)
C90.74628 (18)0.53228 (19)0.00240 (4)0.0322 (3)
C100.87162 (17)0.38840 (17)0.01950 (4)0.0301 (2)
C110.97163 (15)0.40703 (17)0.06930 (4)0.0262 (2)
H12A0.982 (2)0.607 (2)0.2356 (5)0.029 (3)*
H12B0.841 (2)0.502 (2)0.2017 (6)0.027 (3)*
H12C0.843 (2)0.725 (2)0.2029 (7)0.037 (4)*
H4A1.277 (2)0.769 (2)0.1917 (7)0.040 (4)*
H4B1.123 (2)0.880 (2)0.1540 (6)0.035 (4)*
H4C1.285 (3)0.743 (2)0.1246 (8)0.046 (5)*
H51.142 (2)0.473 (2)0.1604 (5)0.025 (3)*
H70.815 (3)0.823 (3)0.1074 (7)0.047 (4)*
H80.628 (3)0.797 (3)0.0243 (7)0.047 (4)*
H90.679 (2)0.519 (2)0.0337 (7)0.037 (4)*
H100.888 (3)0.280 (3)0.0038 (7)0.047 (4)*
H111.060 (2)0.306 (2)0.0825 (6)0.040 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0251 (4)0.0255 (4)0.0282 (4)0.0022 (3)0.0060 (3)0.0044 (3)
O20.0350 (4)0.0177 (3)0.0385 (4)0.0028 (3)0.0098 (3)0.0048 (3)
O30.0296 (4)0.0166 (3)0.0328 (4)0.0004 (3)0.0037 (3)0.0020 (3)
C10.0271 (5)0.0185 (4)0.0144 (4)0.0006 (4)0.0017 (3)0.0004 (4)
C20.0225 (5)0.0170 (4)0.0220 (4)0.0014 (4)0.0017 (3)0.0016 (3)
C30.0260 (5)0.0393 (6)0.0239 (5)0.0029 (5)0.0039 (4)0.0032 (4)
N0.0230 (4)0.0183 (4)0.0192 (4)0.0023 (3)0.0024 (3)0.0005 (3)
C40.0271 (5)0.0340 (6)0.0297 (5)0.0084 (4)0.0014 (4)0.0014 (4)
C50.0214 (4)0.0228 (4)0.0221 (4)0.0009 (4)0.0013 (4)0.0013 (4)
C60.0214 (4)0.0270 (5)0.0198 (4)0.0007 (4)0.0010 (3)0.0007 (4)
C70.0367 (6)0.0346 (5)0.0255 (5)0.0114 (5)0.0036 (5)0.0043 (5)
C80.0372 (6)0.0454 (7)0.0281 (5)0.0130 (6)0.0059 (5)0.0013 (5)
C90.0314 (5)0.0453 (7)0.0199 (5)0.0037 (5)0.0019 (4)0.0004 (4)
C100.0344 (6)0.0328 (5)0.0230 (5)0.0036 (5)0.0020 (4)0.0044 (4)
C110.0265 (5)0.0274 (5)0.0247 (5)0.0011 (4)0.0007 (4)0.0023 (4)
Geometric parameters (Å, º) top
O1—C11.2488 (13)C4—H4B0.985 (17)
O2—C11.2677 (12)C4—H4C0.984 (19)
O3—C21.4233 (12)C5—C61.5171 (13)
O3—H2O0.887 (15)C5—H50.973 (15)
C1—C21.5283 (14)C6—C71.3883 (16)
C2—C31.5207 (14)C6—C111.3904 (15)
C2—H2C1.003 (14)C7—C81.3939 (16)
C3—H3A0.97 (2)C7—H70.950 (18)
C3—H3B0.996 (18)C8—C91.3845 (18)
C3—H3C0.92 (2)C8—H80.991 (19)
N—C51.5009 (12)C9—C101.3834 (17)
N—H12A0.898 (14)C9—H90.993 (17)
N—H12B0.876 (16)C10—C111.3944 (15)
N—H12C1.019 (17)C10—H100.951 (19)
C4—C51.5227 (15)C11—H110.983 (17)
C4—H4A1.013 (17)
C2—O3—H2O106.3 (10)H4A—C4—H4C110.2 (13)
O1—C1—O2124.90 (10)H4B—C4—H4C111.5 (13)
O1—C1—C2119.15 (9)N—C5—C6109.65 (8)
O2—C1—C2115.95 (9)N—C5—C4109.70 (8)
O3—C2—C3108.82 (9)C6—C5—C4112.75 (8)
O3—C2—C1111.00 (8)N—C5—H5108.9 (8)
C3—C2—C1109.24 (8)C6—C5—H5108.8 (8)
O3—C2—H2C111.8 (8)C4—C5—H5107.0 (8)
C3—C2—H2C109.1 (8)C7—C6—C11118.58 (9)
C1—C2—H2C106.9 (8)C7—C6—C5121.46 (9)
C2—C3—H3A108.2 (12)C11—C6—C5119.95 (9)
C2—C3—H3B109.7 (10)C6—C7—C8120.68 (11)
H3A—C3—H3B110.2 (14)C6—C7—H7115.8 (11)
C2—C3—H3C113.9 (12)C8—C7—H7123.5 (11)
H3A—C3—H3C107.4 (18)C9—C8—C7120.13 (11)
H3B—C3—H3C107.3 (16)C9—C8—H8121.6 (10)
C5—N—H12A111.9 (10)C7—C8—H8118.2 (10)
C5—N—H12B108.9 (10)C10—C9—C8119.84 (10)
H12A—N—H12B111.5 (13)C10—C9—H9119.1 (9)
C5—N—H12C112.6 (9)C8—C9—H9121.0 (9)
H12A—N—H12C101.9 (13)C9—C10—C11119.77 (11)
H12B—N—H12C109.8 (13)C9—C10—H10118.1 (11)
C5—C4—H4A113.0 (9)C11—C10—H10122.1 (11)
C5—C4—H4B110.7 (9)C6—C11—C10120.99 (10)
H4A—C4—H4B105.9 (12)C6—C11—H11117.9 (9)
C5—C4—H4C105.8 (10)C10—C11—H11121.1 (9)
O1—C1—C2—O332.44 (12)C11—C6—C7—C80.33 (18)
O2—C1—C2—O3148.46 (8)C5—C6—C7—C8179.80 (11)
O1—C1—C2—C387.55 (11)C6—C7—C8—C90.4 (2)
O2—C1—C2—C391.55 (11)C7—C8—C9—C100.03 (19)
N—C5—C6—C762.03 (13)C8—C9—C10—C110.49 (18)
C4—C5—C6—C760.50 (13)C7—C6—C11—C100.19 (16)
N—C5—C6—C11118.51 (10)C5—C6—C11—C10179.29 (9)
C4—C5—C6—C11118.96 (11)C9—C10—C11—C60.60 (17)
(S) S-1-Phenylethylammonium S-Lactate Monohydrate top
Crystal data top
C8H12N+·C3H5O3·H2OF(000) = 248
Mr = 229.27Dx = 1.251 Mg m3
Monoclinic, P21Melting point: 346.6(4) K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54180 Å
a = 8.0795 (18) ÅCell parameters from 25 reflections
b = 5.8794 (9) Åθ = 39.5–42.2°
c = 12.852 (2) ŵ = 0.79 mm1
β = 94.53 (2)°T = 122 K
V = 608.6 (2) Å3Plate, colourless
Z = 20.50 × 0.25 × 0.16 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.029
Radiation source: fine-focus sealed tubeθmax = 74.8°, θmin = 3.5°
Graphite monochromatorh = 1010
ω –2θ scansk = 77
5053 measured reflectionsl = 016
2505 independent reflections5 standard reflections every 167 min
2503 reflections with I > 2σ(I) intensity decay: 2.3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0408P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.30 e Å3
2505 reflectionsΔρmin = 0.22 e Å3
222 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.169 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (10)
Crystal data top
C8H12N+·C3H5O3·H2OV = 608.6 (2) Å3
Mr = 229.27Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.0795 (18) ŵ = 0.79 mm1
b = 5.8794 (9) ÅT = 122 K
c = 12.852 (2) Å0.50 × 0.25 × 0.16 mm
β = 94.53 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.029
5053 measured reflections5 standard reflections every 167 min
2505 independent reflections intensity decay: 2.3%
2503 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.027All H-atom parameters refined
wR(F2) = 0.073Δρmax = 0.30 e Å3
S = 0.97Δρmin = 0.22 e Å3
2505 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
222 parametersAbsolute structure parameter: 0.02 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76329 (8)0.71619 (12)0.97351 (6)0.01881 (18)
O20.56653 (8)0.56118 (12)0.86435 (6)0.01887 (18)
O30.66876 (10)1.13227 (12)0.93262 (6)0.02168 (19)
C10.63885 (12)0.72913 (16)0.90723 (7)0.0145 (2)
C20.57329 (11)0.96618 (16)0.87586 (7)0.0161 (2)
C30.57819 (14)0.9988 (2)0.75794 (8)0.0244 (2)
H2O0.633 (2)1.261 (3)0.9070 (13)0.032 (4)*
H2C0.4584 (15)0.974 (2)0.8940 (10)0.015 (3)*
H3A0.689 (2)0.972 (3)0.7371 (13)0.033 (4)*
H3B0.5405 (18)1.150 (3)0.7395 (12)0.026 (4)*
H3C0.502 (2)0.889 (4)0.7183 (14)0.040 (4)*
N0.22511 (10)0.52580 (16)0.85703 (6)0.01653 (19)
C40.03702 (12)0.38837 (19)0.76866 (8)0.0217 (2)
C50.14668 (11)0.42827 (17)0.75715 (7)0.0166 (2)
C60.18112 (11)0.58341 (17)0.66711 (7)0.0166 (2)
C70.10041 (13)0.79269 (19)0.65234 (8)0.0214 (2)
C80.13396 (14)0.9328 (2)0.56926 (8)0.0252 (2)
C90.25039 (14)0.8676 (2)0.50089 (8)0.0260 (2)
C100.33087 (14)0.6602 (2)0.51472 (8)0.0269 (3)
C110.29657 (13)0.5188 (2)0.59761 (7)0.0222 (2)
H12A0.3331 (19)0.550 (3)0.8511 (12)0.024 (3)*
H12B0.2265 (18)0.436 (3)0.9130 (13)0.027 (3)*
H12C0.1742 (18)0.652 (3)0.8719 (11)0.024 (4)*
H4A0.0943 (19)0.530 (3)0.7786 (12)0.028 (4)*
H4B0.0490 (18)0.299 (3)0.8254 (13)0.029 (4)*
H4C0.095 (2)0.317 (3)0.7075 (14)0.034 (4)*
H50.1953 (16)0.279 (3)0.7459 (10)0.016 (3)*
H70.017 (2)0.839 (3)0.7006 (14)0.034 (4)*
H80.080 (2)1.070 (4)0.5608 (13)0.034 (4)*
H90.2684 (19)0.962 (4)0.4413 (14)0.038 (4)*
H100.409 (2)0.616 (3)0.4700 (14)0.034 (4)*
H110.357 (2)0.372 (4)0.6057 (14)0.041 (4)*
O1AQ0.94302 (9)0.41230 (14)1.09255 (6)0.02135 (19)
H1AQ1.036 (2)0.382 (4)1.0690 (14)0.036 (4)*
H2AQ0.886 (2)0.481 (4)1.0474 (16)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (3)0.0172 (4)0.0200 (3)0.0019 (2)0.0058 (2)0.0000 (3)
O20.0176 (3)0.0159 (4)0.0225 (3)0.0008 (3)0.0025 (2)0.0012 (3)
O30.0305 (4)0.0140 (4)0.0190 (3)0.0014 (3)0.0075 (3)0.0001 (3)
C10.0132 (4)0.0159 (5)0.0146 (4)0.0004 (3)0.0019 (3)0.0004 (3)
C20.0164 (4)0.0151 (5)0.0159 (4)0.0000 (3)0.0034 (3)0.0003 (3)
C30.0345 (6)0.0222 (5)0.0153 (4)0.0024 (4)0.0058 (4)0.0027 (4)
N0.0166 (4)0.0189 (4)0.0134 (4)0.0008 (3)0.0025 (3)0.0001 (3)
C40.0188 (5)0.0267 (6)0.0189 (4)0.0063 (4)0.0032 (3)0.0044 (4)
C50.0185 (4)0.0168 (4)0.0142 (4)0.0008 (4)0.0013 (3)0.0008 (4)
C60.0183 (4)0.0180 (5)0.0130 (4)0.0022 (4)0.0028 (3)0.0011 (4)
C70.0260 (5)0.0202 (5)0.0176 (4)0.0008 (4)0.0002 (4)0.0001 (4)
C80.0313 (5)0.0224 (5)0.0206 (5)0.0027 (4)0.0060 (4)0.0040 (4)
C90.0286 (5)0.0327 (6)0.0157 (4)0.0115 (4)0.0046 (4)0.0054 (4)
C100.0247 (5)0.0393 (7)0.0169 (4)0.0032 (5)0.0034 (4)0.0017 (5)
C110.0212 (4)0.0278 (5)0.0175 (4)0.0009 (4)0.0009 (3)0.0013 (4)
O1AQ0.0194 (4)0.0238 (4)0.0205 (3)0.0019 (3)0.0007 (3)0.0038 (3)
Geometric parameters (Å, º) top
O1—C11.2676 (12)C4—H4C0.980 (18)
O2—C11.2527 (12)C5—C61.5164 (13)
O3—C21.4113 (12)C5—H50.976 (16)
O3—H2O0.87 (2)C6—C111.3942 (13)
C1—C21.5335 (13)C6—C71.3985 (15)
C2—C31.5312 (13)C7—C81.3920 (16)
C2—H2C0.976 (13)C7—H70.988 (18)
C3—H3A0.968 (17)C8—C91.3909 (18)
C3—H3B0.962 (19)C8—H80.92 (2)
C3—H3C1.00 (2)C9—C101.3868 (19)
N—C51.4999 (12)C9—H90.97 (2)
N—H12A0.893 (16)C10—C111.3963 (17)
N—H12B0.890 (18)C10—H100.922 (18)
N—H12C0.875 (19)C11—H110.99 (2)
C4—C51.5213 (13)O1AQ—H1AQ0.850 (19)
C4—H4A0.966 (19)O1AQ—H2AQ0.82 (2)
C4—H4B0.911 (18)
C2—O3—H2O104.9 (12)H4B—C4—H4C108.6 (15)
O2—C1—O1124.47 (9)N—C5—C6109.43 (8)
O2—C1—C2117.47 (8)N—C5—C4108.98 (7)
O1—C1—C2118.06 (8)C6—C5—C4113.96 (8)
O3—C2—C3111.66 (8)N—C5—H5108.8 (8)
O3—C2—C1109.24 (7)C6—C5—H5109.1 (8)
C3—C2—C1109.80 (8)C4—C5—H5106.5 (8)
O3—C2—H2C109.6 (8)C11—C6—C7118.77 (9)
C3—C2—H2C109.3 (8)C11—C6—C5119.82 (9)
C1—C2—H2C107.2 (8)C7—C6—C5121.41 (8)
C2—C3—H3A110.5 (10)C8—C7—C6120.52 (10)
C2—C3—H3B109.1 (9)C8—C7—H7120.1 (11)
H3A—C3—H3B111.2 (14)C6—C7—H7119.4 (11)
C2—C3—H3C111.0 (11)C9—C8—C7120.25 (11)
H3A—C3—H3C107.5 (15)C9—C8—H8120.4 (11)
H3B—C3—H3C107.4 (15)C7—C8—H8119.3 (11)
C5—N—H12A109.7 (10)C10—C9—C8119.68 (10)
C5—N—H12B116.3 (11)C10—C9—H9120.5 (11)
H12A—N—H12B102.3 (14)C8—C9—H9119.6 (11)
C5—N—H12C109.6 (9)C9—C10—C11120.14 (10)
H12A—N—H12C111.4 (15)C9—C10—H10120.1 (12)
H12B—N—H12C107.4 (14)C11—C10—H10119.7 (12)
C5—C4—H4A111.2 (10)C6—C11—C10120.64 (11)
C5—C4—H4B109.5 (9)C6—C11—H11121.3 (11)
H4A—C4—H4B108.0 (14)C10—C11—H11118.1 (11)
C5—C4—H4C113.6 (10)H1AQ—O1AQ—H2AQ108.5 (17)
H4A—C4—H4C105.8 (14)
O2—C1—C2—O3179.47 (8)C11—C6—C7—C80.49 (14)
O1—C1—C2—O31.40 (11)C5—C6—C7—C8179.90 (9)
O2—C1—C2—C357.76 (11)C6—C7—C8—C91.05 (16)
O1—C1—C2—C3121.36 (9)C7—C8—C9—C101.17 (16)
N—C5—C6—C11106.21 (10)C8—C9—C10—C110.75 (16)
C4—C5—C6—C11131.51 (9)C7—C6—C11—C100.07 (14)
N—C5—C6—C773.20 (10)C5—C6—C11—C10179.50 (9)
C4—C5—C6—C749.08 (12)C9—C10—C11—C60.21 (16)

Experimental details

(R)(S)
Crystal data
Chemical formulaC8H12N+·C3H5O3C8H12N+·C3H5O3·H2O
Mr211.26229.27
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)122122
a, b, c (Å)6.8465 (10), 6.9702 (7), 24.248 (4)8.0795 (18), 5.8794 (9), 12.852 (2)
α, β, γ (°)90, 90, 9090, 94.53 (2), 90
V3)1157.1 (3)608.6 (2)
Z42
Radiation typeCu KαCu Kα
µ (mm1)0.720.79
Crystal size (mm)0.48 × 0.21 × 0.120.50 × 0.25 × 0.16
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8032, 2384, 2342 5053, 2505, 2503
Rint0.0210.029
(sin θ/λ)max1)0.6260.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.03 0.027, 0.073, 0.97
No. of reflections23842505
No. of parameters205222
No. of restraints01
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.210.30, 0.22
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.03 (14)0.02 (10)

Computer programs: CAD-4 (Enraf-Nonius, 1989), DREADD (Blessing, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (R) top
O1—C11.2488 (13)C5—C61.5171 (13)
O2—C11.2677 (12)C6—C71.3883 (16)
O3—C21.4233 (12)C6—C111.3904 (15)
C1—C21.5283 (14)C7—C81.3939 (16)
C2—C31.5207 (14)C8—C91.3845 (18)
N—C51.5009 (12)C9—C101.3834 (17)
C4—C51.5227 (15)C10—C111.3944 (15)
O1—C1—O2124.90 (10)C7—C6—C11118.58 (9)
O1—C1—C2119.15 (9)C7—C6—C5121.46 (9)
O2—C1—C2115.95 (9)C11—C6—C5119.95 (9)
O3—C2—C3108.82 (9)C6—C7—C8120.68 (11)
O3—C2—C1111.00 (8)C9—C8—C7120.13 (11)
C3—C2—C1109.24 (8)C10—C9—C8119.84 (10)
N—C5—C6109.65 (8)C9—C10—C11119.77 (11)
N—C5—C4109.70 (8)C6—C11—C10120.99 (10)
C6—C5—C4112.75 (8)
O1—C1—C2—O332.44 (12)C11—C6—C7—C80.33 (18)
O2—C1—C2—O3148.46 (8)C5—C6—C7—C8179.80 (11)
O1—C1—C2—C387.55 (11)C6—C7—C8—C90.4 (2)
O2—C1—C2—C391.55 (11)C7—C8—C9—C100.03 (19)
N—C5—C6—C762.03 (13)C8—C9—C10—C110.49 (18)
C4—C5—C6—C760.50 (13)C7—C6—C11—C100.19 (16)
N—C5—C6—C11118.51 (10)C5—C6—C11—C10179.29 (9)
C4—C5—C6—C11118.96 (11)C9—C10—C11—C60.60 (17)
Selected geometric parameters (Å, º) for (S) top
O1—C11.2676 (12)C5—H50.976 (16)
O2—C11.2527 (12)C6—C111.3942 (13)
O3—C21.4113 (12)C6—C71.3985 (15)
C1—C21.5335 (13)C7—C81.3920 (16)
C2—C31.5312 (13)C8—C91.3909 (18)
N—C51.4999 (12)C9—C101.3868 (19)
C4—C51.5213 (13)C10—C111.3963 (17)
C5—C61.5164 (13)
O2—C1—O1124.47 (9)N—C5—H5108.8 (8)
O2—C1—C2117.47 (8)C11—C6—C7118.77 (9)
O1—C1—C2118.06 (8)C11—C6—C5119.82 (9)
O3—C2—C3111.66 (8)C7—C6—C5121.41 (8)
O3—C2—C1109.24 (7)C8—C7—C6120.52 (10)
C3—C2—C1109.80 (8)C9—C8—C7120.25 (11)
N—C5—C6109.43 (8)C10—C9—C8119.68 (10)
N—C5—C4108.98 (7)C9—C10—C11120.14 (10)
C6—C5—C4113.96 (8)C6—C11—C10120.64 (11)
O2—C1—C2—O3179.47 (8)C11—C6—C7—C80.49 (14)
O1—C1—C2—O31.40 (11)C5—C6—C7—C8179.90 (9)
O2—C1—C2—C357.76 (11)C6—C7—C8—C91.05 (16)
O1—C1—C2—C3121.36 (9)C7—C8—C9—C101.17 (16)
N—C5—C6—C11106.21 (10)C8—C9—C10—C110.75 (16)
C4—C5—C6—C11131.51 (9)C7—C6—C11—C100.07 (14)
N—C5—C6—C773.20 (10)C5—C6—C11—C10179.50 (9)
C4—C5—C6—C749.08 (12)C9—C10—C11—C60.21 (16)
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds