Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051513/rz2166sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051513/rz2166Isup2.hkl |
CCDC reference: 667200
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.009 Å
- Disorder in solvent or counterion
- R factor = 0.050
- wR factor = 0.126
- Data-to-parameter ratio = 15.7
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact Br2 .. C4 .. 3.24 Ang.
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.78 PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 1 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.80 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C10 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 13.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C8 - C9 ... 1.43 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.782 Tmax scaled 0.290 Tmin scaled 0.258 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
For related literature, see: Angulo et al. (2001); Dey et al. (2004); Diao (2007); Diao et al. (2007); Edison et al. (2004); Liu et al. (2006); Ramadevi et al. (2005); Suh et al. (1996); Tang (2006); Zhang (2006); Zhu et al. (2004).
3,5-Dibromo-2-hydroxybenzaldehyde (0.2 mmol, 56.0 mg) and N-isopropyl-1,2-diaminoethane (0.2 mmol, 20.4 mg) were dissolved in methanol (10 ml). To the mixture was added an aqueous solution (1 ml) of nickel(II) chloride hexahydrate (0.1 mmol, 23.8 mg). The final mixture was stirred at room temperature for 30 min, resulting in a green solution. The solution was allowed to stand still in air for a week, yielding green block-shaped crystals of the complex.
H3A, H3B, H2C and H2D were located from a difference Fourier map and refined isotropically, with O—H distances restrained to 0.85 (1) Å, and H···H distance restrained to 1.37 (2) Å. Other H atoms were constrained to ideal geometries, with C—H = 0.93–0.98 Å, N—H = 0.90 Å, and with Uiso(H) set to 1.2Ueq(C,N) and 1.5Ueq(methyl C). The lattice water molecule is disordered, with occupancy of 0.25.
Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Angulo et al., 2001; Dey et al., 2004; Edison et al., 2004; Ramadevi et al., 2005). Recently, the author has reported a mononuclear nickel(II) complex derived from the Schiff base ligand 2-bromo-4-chloro-6-[2-(diethylamino)ethyliminomethyl]phenol (Tang, 2006). As a further study of the structures of such complexes, the title mononuclear nickel(II) complex, derived from the Schiff base ligand 2,4-dibromo-6-[(2-isopropylaminoethylimino)methyl]phenol, is reported in this paper.
The title complex consists of a centrosymmetric mononuclear nickel(II) complex cation, two symmetry-related chloride anions, and half water molecule (Fig. 1). The Ni atom, lying on the inversion centre, is six-coordinated by two phenolic oxygen atoms, two imine N atoms from two Schiff base ligands, and by two oxygen atoms from two water molecules, forming an octahedral geometry. The coordinative bond lengths and angles are within normal ranges and comparable with the corresponding values observed in other similar nickel(II) complexes (Zhu et al., 2004; Liu et al., 2006; Zhang, 2006; Diao, 2007; Diao et al., 2007).
In the crystal structure, ajacent molecules are linked through intermolecular N—H···O, N–H···Cl, N—H···Br and O–H···Cl hydrogen bonds, forming chains running along the b axis, as shown in Fig. 2.
For related literature, see: Angulo et al. (2001); Dey et al. (2004); Diao (2007); Diao et al. (2007); Edison et al. (2004); Liu et al. (2006); Ramadevi et al. (2005); Suh et al. (1996); Tang (2006); Zhang (2006); Zhu et al. (2004).
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997b).
[Ni(C12H16Br2N2O2)2(H2O)2]Cl2·0.5H2O | F(000) = 894 |
Mr = 902.83 | Dx = 2.000 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1836 reflections |
a = 12.685 (3) Å | θ = 2.4–24.9° |
b = 7.0450 (14) Å | µ = 6.20 mm−1 |
c = 17.501 (4) Å | T = 293 K |
β = 106.57 (3)° | Block, green |
V = 1499.0 (6) Å3 | 0.23 × 0.22 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3094 independent reflections |
Radiation source: fine-focus sealed tube | 1968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
ω scans | θmax = 26.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→15 |
Tmin = 0.330, Tmax = 0.370 | k = −8→8 |
11682 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0625P)2] where P = (Fo2 + 2Fc2)/3 |
3094 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.70 e Å−3 |
6 restraints | Δρmin = −0.76 e Å−3 |
[Ni(C12H16Br2N2O2)2(H2O)2]Cl2·0.5H2O | V = 1499.0 (6) Å3 |
Mr = 902.83 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.685 (3) Å | µ = 6.20 mm−1 |
b = 7.0450 (14) Å | T = 293 K |
c = 17.501 (4) Å | 0.23 × 0.22 × 0.20 mm |
β = 106.57 (3)° |
Bruker SMART CCD area-detector diffractometer | 3094 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1968 reflections with I > 2σ(I) |
Tmin = 0.330, Tmax = 0.370 | Rint = 0.073 |
11682 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 6 restraints |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.70 e Å−3 |
3094 reflections | Δρmin = −0.76 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.5000 | 1.0000 | 0.5000 | 0.0260 (3) | |
Br1 | 0.12695 (6) | 0.84155 (9) | 0.49949 (4) | 0.0434 (2) | |
Br2 | 0.05294 (7) | 0.59011 (13) | 0.18878 (5) | 0.0616 (3) | |
Cl1 | 0.48050 (17) | 0.4909 (2) | 0.63566 (10) | 0.0487 (5) | |
O1 | 0.3353 (3) | 0.9775 (5) | 0.4683 (2) | 0.0301 (10) | |
O2 | 0.4839 (4) | 1.2618 (5) | 0.4926 (3) | 0.0423 (12) | |
N1 | 0.4928 (4) | 0.9890 (6) | 0.3815 (3) | 0.0273 (11) | |
N2 | 0.6982 (4) | 0.8048 (6) | 0.4195 (3) | 0.0345 (13) | |
H2A | 0.6499 | 0.7117 | 0.4200 | 0.041* | |
H2B | 0.6982 | 0.8856 | 0.4593 | 0.041* | |
C1 | 0.3097 (5) | 0.8639 (7) | 0.3374 (3) | 0.0269 (14) | |
C2 | 0.2780 (5) | 0.8899 (8) | 0.4081 (4) | 0.0286 (14) | |
C3 | 0.1762 (5) | 0.8157 (8) | 0.4078 (4) | 0.0320 (15) | |
C4 | 0.1117 (5) | 0.7276 (8) | 0.3449 (4) | 0.0345 (15) | |
H4 | 0.0440 | 0.6804 | 0.3467 | 0.041* | |
C5 | 0.1440 (5) | 0.7056 (8) | 0.2772 (4) | 0.0356 (15) | |
C6 | 0.2421 (5) | 0.7774 (9) | 0.2732 (4) | 0.0322 (15) | |
H6 | 0.264 (5) | 0.741 (9) | 0.232 (4) | 0.040 (19)* | |
C7 | 0.4103 (5) | 0.9311 (8) | 0.3266 (4) | 0.0317 (15) | |
H7 | 0.4162 | 0.9326 | 0.2748 | 0.038* | |
C8 | 0.5861 (5) | 1.0499 (8) | 0.3532 (4) | 0.0313 (15) | |
H8A | 0.5569 | 1.1118 | 0.3020 | 0.038* | |
H8B | 0.6274 | 1.1444 | 0.3901 | 0.038* | |
C9 | 0.6611 (5) | 0.9057 (9) | 0.3444 (4) | 0.0361 (16) | |
H9A | 0.7232 | 0.9623 | 0.3310 | 0.043* | |
H9B | 0.6247 | 0.8189 | 0.3021 | 0.043* | |
C10 | 0.8093 (6) | 0.7205 (9) | 0.4351 (4) | 0.0416 (17) | |
H10 | 0.8615 | 0.8233 | 0.4353 | 0.050* | |
C11 | 0.8067 (7) | 0.5971 (10) | 0.3689 (5) | 0.066 (2) | |
H11A | 0.7412 | 0.5212 | 0.3568 | 0.099* | |
H11B | 0.8701 | 0.5159 | 0.3826 | 0.099* | |
H11C | 0.8071 | 0.6722 | 0.3232 | 0.099* | |
C12 | 0.8337 (7) | 0.6441 (11) | 0.5172 (5) | 0.076 (3) | |
H12A | 0.7781 | 0.5540 | 0.5198 | 0.114* | |
H12B | 0.8346 | 0.7462 | 0.5537 | 0.114* | |
H12C | 0.9042 | 0.5828 | 0.5313 | 0.114* | |
H2C | 0.496 (8) | 1.325 (10) | 0.455 (3) | 0.114* | |
H2D | 0.503 (8) | 1.327 (10) | 0.535 (3) | 0.114* | |
O3 | 0.728 (2) | 0.810 (3) | 0.1714 (8) | 0.146 (14) | 0.25 |
H3A | 0.7048 | 0.7449 | 0.1289 | 0.219* | 0.25 |
H3B | 0.7013 | 0.7704 | 0.2079 | 0.219* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0331 (7) | 0.0166 (5) | 0.0314 (6) | −0.0026 (5) | 0.0141 (5) | −0.0012 (4) |
Br1 | 0.0462 (5) | 0.0374 (4) | 0.0562 (5) | −0.0086 (3) | 0.0300 (4) | −0.0085 (3) |
Br2 | 0.0564 (6) | 0.0652 (6) | 0.0616 (5) | −0.0223 (4) | 0.0140 (4) | −0.0286 (4) |
Cl1 | 0.0817 (14) | 0.0268 (8) | 0.0444 (10) | −0.0077 (9) | 0.0289 (10) | −0.0023 (7) |
O1 | 0.033 (3) | 0.025 (2) | 0.035 (2) | −0.0034 (18) | 0.014 (2) | −0.0050 (19) |
O2 | 0.073 (3) | 0.015 (2) | 0.047 (3) | −0.004 (2) | 0.028 (3) | 0.003 (2) |
N1 | 0.034 (3) | 0.014 (2) | 0.038 (3) | 0.001 (2) | 0.016 (3) | −0.001 (2) |
N2 | 0.041 (3) | 0.020 (3) | 0.047 (3) | −0.001 (2) | 0.019 (3) | −0.008 (2) |
C1 | 0.035 (4) | 0.015 (3) | 0.030 (3) | −0.002 (2) | 0.007 (3) | 0.000 (2) |
C2 | 0.032 (4) | 0.018 (3) | 0.039 (4) | 0.001 (3) | 0.015 (3) | 0.003 (3) |
C3 | 0.035 (4) | 0.021 (3) | 0.043 (4) | 0.002 (3) | 0.017 (3) | 0.000 (3) |
C4 | 0.031 (4) | 0.025 (3) | 0.049 (4) | −0.004 (3) | 0.014 (3) | 0.000 (3) |
C5 | 0.035 (4) | 0.024 (3) | 0.048 (4) | −0.004 (3) | 0.012 (3) | −0.008 (3) |
C6 | 0.040 (4) | 0.026 (3) | 0.033 (4) | 0.001 (3) | 0.014 (3) | 0.001 (3) |
C7 | 0.043 (4) | 0.021 (3) | 0.033 (4) | −0.001 (3) | 0.014 (3) | 0.001 (3) |
C8 | 0.041 (4) | 0.018 (3) | 0.041 (4) | −0.001 (3) | 0.022 (3) | 0.002 (3) |
C9 | 0.048 (4) | 0.031 (3) | 0.036 (4) | −0.004 (3) | 0.022 (3) | −0.001 (3) |
C10 | 0.037 (4) | 0.025 (3) | 0.062 (5) | 0.000 (3) | 0.013 (4) | −0.003 (3) |
C11 | 0.068 (6) | 0.037 (4) | 0.099 (7) | 0.005 (4) | 0.034 (5) | −0.022 (4) |
C12 | 0.080 (7) | 0.042 (5) | 0.098 (7) | 0.028 (4) | 0.012 (6) | 0.014 (5) |
O3 | 0.19 (4) | 0.15 (3) | 0.07 (2) | 0.00 (3) | −0.02 (2) | 0.00 (2) |
Ni1—O2i | 1.856 (4) | C4—C5 | 1.368 (8) |
Ni1—O2 | 1.856 (4) | C4—H4 | 0.9300 |
Ni1—O1i | 2.009 (4) | C5—C6 | 1.363 (8) |
Ni1—O1 | 2.009 (4) | C6—H6 | 0.88 (6) |
Ni1—N1i | 2.052 (5) | C7—H7 | 0.9300 |
Ni1—N1 | 2.052 (5) | C8—C9 | 1.430 (8) |
Br1—C3 | 1.890 (6) | C8—H8A | 0.9700 |
Br2—C5 | 1.836 (6) | C8—H8B | 0.9700 |
O1—C2 | 1.258 (7) | C9—H9A | 0.9700 |
O2—H2C | 0.84 (7) | C9—H9B | 0.9700 |
O2—H2D | 0.85 (6) | C10—C11 | 1.442 (9) |
N1—C7 | 1.269 (7) | C10—C12 | 1.482 (10) |
N1—C8 | 1.471 (7) | C10—H10 | 0.9800 |
N2—C9 | 1.449 (8) | C11—H11A | 0.9600 |
N2—C10 | 1.481 (8) | C11—H11B | 0.9600 |
N2—H2A | 0.9000 | C11—H11C | 0.9600 |
N2—H2B | 0.9000 | C12—H12A | 0.9600 |
C1—C6 | 1.348 (8) | C12—H12B | 0.9600 |
C1—C2 | 1.419 (8) | C12—H12C | 0.9600 |
C1—C7 | 1.423 (8) | O3—H3A | 0.8524 |
C2—C3 | 1.392 (8) | O3—H3B | 0.8518 |
C3—C4 | 1.323 (8) | ||
O2i—Ni1—O2 | 180.000 (1) | C6—C5—C4 | 120.3 (6) |
O2i—Ni1—O1i | 88.52 (19) | C6—C5—Br2 | 119.1 (5) |
O2—Ni1—O1i | 91.48 (19) | C4—C5—Br2 | 120.5 (5) |
O2i—Ni1—O1 | 91.48 (19) | C1—C6—C5 | 119.9 (6) |
O2—Ni1—O1 | 88.52 (19) | C1—C6—H6 | 123 (4) |
O1i—Ni1—O1 | 180.00 (7) | C5—C6—H6 | 116 (4) |
O2i—Ni1—N1i | 89.71 (18) | N1—C7—C1 | 125.7 (6) |
O2—Ni1—N1i | 90.29 (18) | N1—C7—H7 | 117.1 |
O1i—Ni1—N1i | 88.57 (18) | C1—C7—H7 | 117.1 |
O1—Ni1—N1i | 91.43 (18) | C9—C8—N1 | 116.9 (5) |
O2i—Ni1—N1 | 90.29 (18) | C9—C8—H8A | 108.1 |
O2—Ni1—N1 | 89.71 (18) | N1—C8—H8A | 108.1 |
O1i—Ni1—N1 | 91.43 (18) | C9—C8—H8B | 108.1 |
O1—Ni1—N1 | 88.57 (18) | N1—C8—H8B | 108.1 |
N1i—Ni1—N1 | 180.000 (1) | H8A—C8—H8B | 107.3 |
C2—O1—Ni1 | 125.2 (4) | C8—C9—N2 | 107.8 (5) |
Ni1—O2—H2C | 123 (6) | C8—C9—H9A | 110.2 |
Ni1—O2—H2D | 119 (6) | N2—C9—H9A | 110.2 |
H2C—O2—H2D | 109 (7) | C8—C9—H9B | 110.2 |
C7—N1—C8 | 114.1 (5) | N2—C9—H9B | 110.2 |
C7—N1—Ni1 | 124.5 (4) | H9A—C9—H9B | 108.5 |
C8—N1—Ni1 | 121.4 (4) | C11—C10—N2 | 106.9 (6) |
C9—N2—C10 | 114.2 (5) | C11—C10—C12 | 120.7 (6) |
C9—N2—H2A | 108.7 | N2—C10—C12 | 104.4 (6) |
C10—N2—H2A | 108.7 | C11—C10—H10 | 108.1 |
C9—N2—H2B | 108.7 | N2—C10—H10 | 108.1 |
C10—N2—H2B | 108.7 | C12—C10—H10 | 108.1 |
H2A—N2—H2B | 107.6 | C10—C11—H11A | 109.5 |
C6—C1—C2 | 120.9 (6) | C10—C11—H11B | 109.5 |
C6—C1—C7 | 114.9 (5) | H11A—C11—H11B | 109.5 |
C2—C1—C7 | 124.1 (5) | C10—C11—H11C | 109.5 |
O1—C2—C3 | 120.1 (5) | H11A—C11—H11C | 109.5 |
O1—C2—C1 | 123.7 (5) | H11B—C11—H11C | 109.5 |
C3—C2—C1 | 116.2 (6) | C10—C12—H12A | 109.5 |
C4—C3—C2 | 122.2 (6) | C10—C12—H12B | 109.5 |
C4—C3—Br1 | 118.4 (5) | H12A—C12—H12B | 109.5 |
C2—C3—Br1 | 119.4 (5) | C10—C12—H12C | 109.5 |
C3—C4—C5 | 120.4 (6) | H12A—C12—H12C | 109.5 |
C3—C4—H4 | 119.8 | H12B—C12—H12C | 109.5 |
C5—C4—H4 | 119.8 | H3A—O3—H3B | 111.5 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1ii | 0.90 | 2.19 | 3.027 (5) | 154 |
N2—H2A···O2i | 0.90 | 2.60 | 3.155 (7) | 121 |
N2—H2B···O1i | 0.90 | 1.74 | 2.620 (6) | 166 |
N2—H2B···Br1i | 0.90 | 2.87 | 3.368 (5) | 117 |
O2—H2C···Cl1i | 0.84 (7) | 2.14 (6) | 2.977 (4) | 174 (9) |
O2—H2D···Cl1iii | 0.85 (6) | 2.19 (4) | 2.989 (5) | 157 (9) |
O3—H3A···O1iv | 0.85 | 2.49 | 3.316 (13) | 163 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H16Br2N2O2)2(H2O)2]Cl2·0.5H2O |
Mr | 902.83 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.685 (3), 7.0450 (14), 17.501 (4) |
β (°) | 106.57 (3) |
V (Å3) | 1499.0 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.20 |
Crystal size (mm) | 0.23 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.330, 0.370 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11682, 3094, 1968 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.126, 1.01 |
No. of reflections | 3094 |
No. of parameters | 197 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.70, −0.76 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997b).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1i | 0.90 | 2.19 | 3.027 (5) | 154.2 |
N2—H2A···O2ii | 0.90 | 2.60 | 3.155 (7) | 121.0 |
N2—H2B···O1ii | 0.90 | 1.74 | 2.620 (6) | 165.7 |
N2—H2B···Br1ii | 0.90 | 2.87 | 3.368 (5) | 116.6 |
O2—H2C···Cl1ii | 0.84 (7) | 2.14 (6) | 2.977 (4) | 174 (9) |
O2—H2D···Cl1iii | 0.85 (6) | 2.19 (4) | 2.989 (5) | 157 (9) |
O3—H3A···O1iv | 0.85 | 2.49 | 3.316 (13) | 163.1 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y+1, z; (iv) −x+1, y−1/2, −z+1/2. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Angulo et al., 2001; Dey et al., 2004; Edison et al., 2004; Ramadevi et al., 2005). Recently, the author has reported a mononuclear nickel(II) complex derived from the Schiff base ligand 2-bromo-4-chloro-6-[2-(diethylamino)ethyliminomethyl]phenol (Tang, 2006). As a further study of the structures of such complexes, the title mononuclear nickel(II) complex, derived from the Schiff base ligand 2,4-dibromo-6-[(2-isopropylaminoethylimino)methyl]phenol, is reported in this paper.
The title complex consists of a centrosymmetric mononuclear nickel(II) complex cation, two symmetry-related chloride anions, and half water molecule (Fig. 1). The Ni atom, lying on the inversion centre, is six-coordinated by two phenolic oxygen atoms, two imine N atoms from two Schiff base ligands, and by two oxygen atoms from two water molecules, forming an octahedral geometry. The coordinative bond lengths and angles are within normal ranges and comparable with the corresponding values observed in other similar nickel(II) complexes (Zhu et al., 2004; Liu et al., 2006; Zhang, 2006; Diao, 2007; Diao et al., 2007).
In the crystal structure, ajacent molecules are linked through intermolecular N—H···O, N–H···Cl, N—H···Br and O–H···Cl hydrogen bonds, forming chains running along the b axis, as shown in Fig. 2.